Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnmbllem0 Structured version   Visualization version   GIF version

Theorem opnmbllem0 35740
Description: Lemma for ismblfin 35745; could also be used to shorten proof of opnmbllem 24670. (Contributed by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
opnmbllem0 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnmbllem0
Dummy variables 𝑛 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . . 8 (𝑧 = 𝑤 → ([,]‘𝑧) = ([,]‘𝑤))
21sseq1d 3948 . . . . . . 7 (𝑧 = 𝑤 → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴))
32elrab 3617 . . . . . 6 (𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴))
4 simprr 769 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ⊆ 𝐴)
5 fvex 6769 . . . . . . . 8 ([,]‘𝑤) ∈ V
65elpw 4534 . . . . . . 7 (([,]‘𝑤) ∈ 𝒫 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴)
74, 6sylibr 233 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ∈ 𝒫 𝐴)
83, 7sylan2b 593 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) → ([,]‘𝑤) ∈ 𝒫 𝐴)
98ralrimiva 3107 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
10 iccf 13109 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
11 ffun 6587 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
1210, 11ax-mp 5 . . . . 5 Fun [,]
13 ssrab2 4009 . . . . . . 7 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
14 oveq1 7262 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 / (2↑𝑦)) = (𝑟 / (2↑𝑦)))
15 oveq1 7262 . . . . . . . . . . . . 13 (𝑥 = 𝑟 → (𝑥 + 1) = (𝑟 + 1))
1615oveq1d 7270 . . . . . . . . . . . 12 (𝑥 = 𝑟 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑦)))
1714, 16opeq12d 4809 . . . . . . . . . . 11 (𝑥 = 𝑟 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩)
18 oveq2 7263 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (2↑𝑦) = (2↑𝑠))
1918oveq2d 7271 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 / (2↑𝑦)) = (𝑟 / (2↑𝑠)))
2018oveq2d 7271 . . . . . . . . . . . 12 (𝑦 = 𝑠 → ((𝑟 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑠)))
2119, 20opeq12d 4809 . . . . . . . . . . 11 (𝑦 = 𝑠 → ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2217, 21cbvmpov 7348 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑟 ∈ ℤ, 𝑠 ∈ ℕ0 ↦ ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2322dyadf 24660 . . . . . . . . 9 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
24 frn 6591 . . . . . . . . 9 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
2523, 24ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
26 inss2 4160 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
27 rexpssxrxp 10951 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2826, 27sstri 3926 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
2925, 28sstri 3926 . . . . . . 7 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ* × ℝ*)
3013, 29sstri 3926 . . . . . 6 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ (ℝ* × ℝ*)
3110fdmi 6596 . . . . . 6 dom [,] = (ℝ* × ℝ*)
3230, 31sseqtrri 3954 . . . . 5 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]
33 funimass4 6816 . . . . 5 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴))
3412, 32, 33mp2an 688 . . . 4 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
359, 34sylibr 233 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴)
36 sspwuni 5025 . . 3 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
3735, 36sylib 217 . 2 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
38 eqid 2738 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3938rexmet 23860 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
40 eqid 2738 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4138, 40tgioo 23865 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4241mopni2 23555 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
4339, 42mp3an1 1446 . . 3 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
44 elssuni 4868 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
45 uniretop 23832 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4644, 45sseqtrrdi 3968 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
4746sselda 3917 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
48 rpre 12667 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4938bl2ioo 23861 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5047, 48, 49syl2an 595 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5150sseq1d 3948 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴 ↔ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴))
52 2re 11977 . . . . . . . . 9 2 ∈ ℝ
53 1lt2 12074 . . . . . . . . 9 1 < 2
54 expnlbnd 13876 . . . . . . . . 9 ((𝑟 ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5552, 53, 54mp3an23 1451 . . . . . . . 8 (𝑟 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5655ad2antrl 724 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5747ad2antrr 722 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ℝ)
58 2nn 11976 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
59 nnnn0 12170 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6059ad2antrl 724 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑛 ∈ ℕ0)
61 nnexpcl 13723 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
6258, 60, 61sylancr 586 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℕ)
6362nnred 11918 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℝ)
6457, 63remulcld 10936 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) ∈ ℝ)
65 fllelt 13445 . . . . . . . . . . . . 13 ((𝑤 · (2↑𝑛)) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6664, 65syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6766simpld 494 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)))
68 reflcl 13444 . . . . . . . . . . . . 13 ((𝑤 · (2↑𝑛)) ∈ ℝ → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
6964, 68syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
7062nngt0d 11952 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 0 < (2↑𝑛))
71 ledivmul2 11784 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7269, 57, 63, 70, 71syl112anc 1372 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7367, 72mpbird 256 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤)
74 peano2re 11078 . . . . . . . . . . . . 13 ((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7569, 74syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7675, 62nndivred 11957 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ)
7766simprd 495 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1))
78 ltmuldiv 11778 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
7957, 75, 63, 70, 78syl112anc 1372 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8077, 79mpbid 231 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8157, 76, 80ltled 11053 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8269, 62nndivred 11957 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ)
83 elicc2 13073 . . . . . . . . . . 11 ((((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8482, 76, 83syl2anc 583 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8557, 73, 81, 84mpbir3and 1340 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8664flcld 13446 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ)
8722dyadval 24661 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8886, 60, 87syl2anc 583 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8988fveq2d 6760 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩))
90 df-ov 7258 . . . . . . . . . 10 (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
9189, 90eqtr4di 2797 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
9285, 91eleqtrrd 2842 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
93 ffn 6584 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0))
9423, 93ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0)
95 fnovrn 7425 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0) ∧ (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9694, 95mp3an1 1446 . . . . . . . . . . 11 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9786, 60, 96syl2anc 583 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
98 simplrl 773 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ+)
9998rpred 12701 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ)
10057, 99resubcld 11333 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ)
101100rexrd 10956 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ*)
10257, 99readdcld 10935 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ)
103102rexrd 10956 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ*)
10482, 99readdcld 10935 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟) ∈ ℝ)
10569recnd 10934 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℂ)
106 1cnd 10901 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 1 ∈ ℂ)
10763recnd 10934 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℂ)
10862nnne0d 11953 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ≠ 0)
109105, 106, 107, 108divdird 11719 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))))
11062nnrecred 11954 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) ∈ ℝ)
111 simprr 769 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) < 𝑟)
112110, 99, 82, 111ltadd2dd 11064 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
113109, 112eqbrtrd 5092 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11457, 76, 104, 80, 113lttrd 11066 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11557, 99, 82ltsubaddd 11501 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟)))
116114, 115mpbird 256 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)))
11757, 110readdcld 10935 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) ∈ ℝ)
11882, 57, 110, 73leadd1dd 11519 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) ≤ (𝑤 + (1 / (2↑𝑛))))
119109, 118eqbrtrd 5092 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ≤ (𝑤 + (1 / (2↑𝑛))))
120110, 99, 57, 111ltadd2dd 11064 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) < (𝑤 + 𝑟))
12176, 117, 102, 119, 120lelttrd 11063 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))
122 iccssioo 13077 . . . . . . . . . . . . 13 ((((𝑤𝑟) ∈ ℝ* ∧ (𝑤 + 𝑟) ∈ ℝ*) ∧ ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
123101, 103, 116, 121, 122syl22anc 835 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
12491, 123eqsstrd 3955 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
125 simplrr 774 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)
126124, 125sstrd 3927 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴)
127 fveq2 6756 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → ([,]‘𝑧) = ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
128127sseq1d 3948 . . . . . . . . . . 11 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
129128elrab 3617 . . . . . . . . . 10 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
13097, 126, 129sylanbrc 582 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})
131 funfvima2 7089 . . . . . . . . . 10 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13212, 32, 131mp2an 688 . . . . . . . . 9 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
133130, 132syl 17 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
134 elunii 4841 . . . . . . . 8 ((𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13592, 133, 134syl2anc 583 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13656, 135rexlimddv 3219 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
137136expr 456 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13851, 137sylbid 239 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
139138rexlimdva 3212 . . 3 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → (∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
14043, 139mpd 15 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
14137, 140eqelssd 3938 1 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  𝒫 cpw 4530  cop 4564   cuni 4836   class class class wbr 5070   × cxp 5578  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  +crp 12659  (,)cioo 13008  [,]cicc 13011  cfl 13438  cexp 13710  abscabs 14873  topGenctg 17065  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004
This theorem is referenced by:  mblfinlem1  35741  mblfinlem2  35742
  Copyright terms: Public domain W3C validator