Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnmbllem0 Structured version   Visualization version   GIF version

Theorem opnmbllem0 37636
Description: Lemma for ismblfin 37641; could also be used to shorten proof of opnmbllem 25500. (Contributed by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
opnmbllem0 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnmbllem0
Dummy variables 𝑛 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . . . 8 (𝑧 = 𝑤 → ([,]‘𝑧) = ([,]‘𝑤))
21sseq1d 3967 . . . . . . 7 (𝑧 = 𝑤 → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴))
32elrab 3648 . . . . . 6 (𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴))
4 simprr 772 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ⊆ 𝐴)
5 fvex 6835 . . . . . . . 8 ([,]‘𝑤) ∈ V
65elpw 4555 . . . . . . 7 (([,]‘𝑤) ∈ 𝒫 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴)
74, 6sylibr 234 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ∈ 𝒫 𝐴)
83, 7sylan2b 594 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) → ([,]‘𝑤) ∈ 𝒫 𝐴)
98ralrimiva 3121 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
10 iccf 13351 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
11 ffun 6655 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
1210, 11ax-mp 5 . . . . 5 Fun [,]
13 ssrab2 4031 . . . . . . 7 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
14 oveq1 7356 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 / (2↑𝑦)) = (𝑟 / (2↑𝑦)))
15 oveq1 7356 . . . . . . . . . . . . 13 (𝑥 = 𝑟 → (𝑥 + 1) = (𝑟 + 1))
1615oveq1d 7364 . . . . . . . . . . . 12 (𝑥 = 𝑟 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑦)))
1714, 16opeq12d 4832 . . . . . . . . . . 11 (𝑥 = 𝑟 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩)
18 oveq2 7357 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (2↑𝑦) = (2↑𝑠))
1918oveq2d 7365 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 / (2↑𝑦)) = (𝑟 / (2↑𝑠)))
2018oveq2d 7365 . . . . . . . . . . . 12 (𝑦 = 𝑠 → ((𝑟 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑠)))
2119, 20opeq12d 4832 . . . . . . . . . . 11 (𝑦 = 𝑠 → ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2217, 21cbvmpov 7444 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑟 ∈ ℤ, 𝑠 ∈ ℕ0 ↦ ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2322dyadf 25490 . . . . . . . . 9 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
24 frn 6659 . . . . . . . . 9 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
2523, 24ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
26 inss2 4189 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
27 rexpssxrxp 11160 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2826, 27sstri 3945 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
2925, 28sstri 3945 . . . . . . 7 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ* × ℝ*)
3013, 29sstri 3945 . . . . . 6 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ (ℝ* × ℝ*)
3110fdmi 6663 . . . . . 6 dom [,] = (ℝ* × ℝ*)
3230, 31sseqtrri 3985 . . . . 5 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]
33 funimass4 6887 . . . . 5 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴))
3412, 32, 33mp2an 692 . . . 4 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
359, 34sylibr 234 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴)
36 sspwuni 5049 . . 3 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
3735, 36sylib 218 . 2 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
38 eqid 2729 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3938rexmet 24677 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
40 eqid 2729 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4138, 40tgioo 24682 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4241mopni2 24379 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
4339, 42mp3an1 1450 . . 3 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
44 elssuni 4888 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
45 uniretop 24648 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4644, 45sseqtrrdi 3977 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
4746sselda 3935 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
48 rpre 12902 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4938bl2ioo 24678 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5047, 48, 49syl2an 596 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5150sseq1d 3967 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴 ↔ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴))
52 2re 12202 . . . . . . . . 9 2 ∈ ℝ
53 1lt2 12294 . . . . . . . . 9 1 < 2
54 expnlbnd 14140 . . . . . . . . 9 ((𝑟 ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5552, 53, 54mp3an23 1455 . . . . . . . 8 (𝑟 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5655ad2antrl 728 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5747ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ℝ)
58 2nn 12201 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
59 nnnn0 12391 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6059ad2antrl 728 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑛 ∈ ℕ0)
61 nnexpcl 13981 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
6258, 60, 61sylancr 587 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℕ)
6362nnred 12143 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℝ)
6457, 63remulcld 11145 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) ∈ ℝ)
65 fllelt 13701 . . . . . . . . . . . . 13 ((𝑤 · (2↑𝑛)) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6664, 65syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6766simpld 494 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)))
68 reflcl 13700 . . . . . . . . . . . . 13 ((𝑤 · (2↑𝑛)) ∈ ℝ → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
6964, 68syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
7062nngt0d 12177 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 0 < (2↑𝑛))
71 ledivmul2 12004 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7269, 57, 63, 70, 71syl112anc 1376 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7367, 72mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤)
74 peano2re 11289 . . . . . . . . . . . . 13 ((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7569, 74syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7675, 62nndivred 12182 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ)
7766simprd 495 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1))
78 ltmuldiv 11998 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
7957, 75, 63, 70, 78syl112anc 1376 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8077, 79mpbid 232 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8157, 76, 80ltled 11264 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8269, 62nndivred 12182 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ)
83 elicc2 13314 . . . . . . . . . . 11 ((((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8482, 76, 83syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8557, 73, 81, 84mpbir3and 1343 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8664flcld 13702 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ)
8722dyadval 25491 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8886, 60, 87syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8988fveq2d 6826 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩))
90 df-ov 7352 . . . . . . . . . 10 (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
9189, 90eqtr4di 2782 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
9285, 91eleqtrrd 2831 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
93 ffn 6652 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0))
9423, 93ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0)
95 fnovrn 7524 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0) ∧ (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9694, 95mp3an1 1450 . . . . . . . . . . 11 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9786, 60, 96syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
98 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ+)
9998rpred 12937 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ)
10057, 99resubcld 11548 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ)
101100rexrd 11165 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ*)
10257, 99readdcld 11144 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ)
103102rexrd 11165 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ*)
10482, 99readdcld 11144 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟) ∈ ℝ)
10569recnd 11143 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℂ)
106 1cnd 11110 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 1 ∈ ℂ)
10763recnd 11143 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℂ)
10862nnne0d 12178 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ≠ 0)
109105, 106, 107, 108divdird 11938 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))))
11062nnrecred 12179 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) ∈ ℝ)
111 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) < 𝑟)
112110, 99, 82, 111ltadd2dd 11275 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
113109, 112eqbrtrd 5114 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11457, 76, 104, 80, 113lttrd 11277 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11557, 99, 82ltsubaddd 11716 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟)))
116114, 115mpbird 257 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)))
11757, 110readdcld 11144 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) ∈ ℝ)
11882, 57, 110, 73leadd1dd 11734 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) ≤ (𝑤 + (1 / (2↑𝑛))))
119109, 118eqbrtrd 5114 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ≤ (𝑤 + (1 / (2↑𝑛))))
120110, 99, 57, 111ltadd2dd 11275 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) < (𝑤 + 𝑟))
12176, 117, 102, 119, 120lelttrd 11274 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))
122 iccssioo 13318 . . . . . . . . . . . . 13 ((((𝑤𝑟) ∈ ℝ* ∧ (𝑤 + 𝑟) ∈ ℝ*) ∧ ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
123101, 103, 116, 121, 122syl22anc 838 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
12491, 123eqsstrd 3970 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
125 simplrr 777 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)
126124, 125sstrd 3946 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴)
127 fveq2 6822 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → ([,]‘𝑧) = ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
128127sseq1d 3967 . . . . . . . . . . 11 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
129128elrab 3648 . . . . . . . . . 10 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
13097, 126, 129sylanbrc 583 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})
131 funfvima2 7167 . . . . . . . . . 10 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13212, 32, 131mp2an 692 . . . . . . . . 9 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
133130, 132syl 17 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
134 elunii 4863 . . . . . . . 8 ((𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13592, 133, 134syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13656, 135rexlimddv 3136 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
137136expr 456 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13851, 137sylbid 240 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
139138rexlimdva 3130 . . 3 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → (∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
14043, 139mpd 15 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
14137, 140eqelssd 3957 1 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cin 3902  wss 3903  𝒫 cpw 4551  cop 4583   cuni 4858   class class class wbr 5092   × cxp 5617  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  ccom 5623  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cz 12471  +crp 12893  (,)cioo 13248  [,]cicc 13251  cfl 13694  cexp 13968  abscabs 15141  topGenctg 17341  ∞Metcxmet 21246  ballcbl 21248  MetOpencmopn 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831
This theorem is referenced by:  mblfinlem1  37637  mblfinlem2  37638
  Copyright terms: Public domain W3C validator