Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnmbllem0 Structured version   Visualization version   GIF version

Theorem opnmbllem0 37696
Description: Lemma for ismblfin 37701; could also be used to shorten proof of opnmbllem 25524. (Contributed by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
opnmbllem0 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnmbllem0
Dummy variables 𝑛 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . . . . . 8 (𝑧 = 𝑤 → ([,]‘𝑧) = ([,]‘𝑤))
21sseq1d 3961 . . . . . . 7 (𝑧 = 𝑤 → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴))
32elrab 3642 . . . . . 6 (𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴))
4 simprr 772 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ⊆ 𝐴)
5 fvex 6830 . . . . . . . 8 ([,]‘𝑤) ∈ V
65elpw 4549 . . . . . . 7 (([,]‘𝑤) ∈ 𝒫 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴)
74, 6sylibr 234 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ∈ 𝒫 𝐴)
83, 7sylan2b 594 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) → ([,]‘𝑤) ∈ 𝒫 𝐴)
98ralrimiva 3124 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
10 iccf 13343 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
11 ffun 6649 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
1210, 11ax-mp 5 . . . . 5 Fun [,]
13 ssrab2 4025 . . . . . . 7 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
14 oveq1 7348 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 / (2↑𝑦)) = (𝑟 / (2↑𝑦)))
15 oveq1 7348 . . . . . . . . . . . . 13 (𝑥 = 𝑟 → (𝑥 + 1) = (𝑟 + 1))
1615oveq1d 7356 . . . . . . . . . . . 12 (𝑥 = 𝑟 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑦)))
1714, 16opeq12d 4828 . . . . . . . . . . 11 (𝑥 = 𝑟 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩)
18 oveq2 7349 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (2↑𝑦) = (2↑𝑠))
1918oveq2d 7357 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 / (2↑𝑦)) = (𝑟 / (2↑𝑠)))
2018oveq2d 7357 . . . . . . . . . . . 12 (𝑦 = 𝑠 → ((𝑟 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑠)))
2119, 20opeq12d 4828 . . . . . . . . . . 11 (𝑦 = 𝑠 → ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2217, 21cbvmpov 7436 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑟 ∈ ℤ, 𝑠 ∈ ℕ0 ↦ ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2322dyadf 25514 . . . . . . . . 9 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
24 frn 6653 . . . . . . . . 9 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
2523, 24ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
26 inss2 4183 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
27 rexpssxrxp 11152 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2826, 27sstri 3939 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
2925, 28sstri 3939 . . . . . . 7 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ* × ℝ*)
3013, 29sstri 3939 . . . . . 6 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ (ℝ* × ℝ*)
3110fdmi 6657 . . . . . 6 dom [,] = (ℝ* × ℝ*)
3230, 31sseqtrri 3979 . . . . 5 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]
33 funimass4 6881 . . . . 5 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴))
3412, 32, 33mp2an 692 . . . 4 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
359, 34sylibr 234 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴)
36 sspwuni 5043 . . 3 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
3735, 36sylib 218 . 2 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
38 eqid 2731 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3938rexmet 24701 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
40 eqid 2731 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4138, 40tgioo 24706 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4241mopni2 24403 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
4339, 42mp3an1 1450 . . 3 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
44 elssuni 4884 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
45 uniretop 24672 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4644, 45sseqtrrdi 3971 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
4746sselda 3929 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
48 rpre 12894 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4938bl2ioo 24702 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5047, 48, 49syl2an 596 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5150sseq1d 3961 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴 ↔ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴))
52 2re 12194 . . . . . . . . 9 2 ∈ ℝ
53 1lt2 12286 . . . . . . . . 9 1 < 2
54 expnlbnd 14135 . . . . . . . . 9 ((𝑟 ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5552, 53, 54mp3an23 1455 . . . . . . . 8 (𝑟 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5655ad2antrl 728 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5747ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ℝ)
58 2nn 12193 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
59 nnnn0 12383 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6059ad2antrl 728 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑛 ∈ ℕ0)
61 nnexpcl 13976 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
6258, 60, 61sylancr 587 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℕ)
6362nnred 12135 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℝ)
6457, 63remulcld 11137 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) ∈ ℝ)
65 fllelt 13696 . . . . . . . . . . . . 13 ((𝑤 · (2↑𝑛)) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6664, 65syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6766simpld 494 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)))
68 reflcl 13695 . . . . . . . . . . . . 13 ((𝑤 · (2↑𝑛)) ∈ ℝ → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
6964, 68syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
7062nngt0d 12169 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 0 < (2↑𝑛))
71 ledivmul2 11996 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7269, 57, 63, 70, 71syl112anc 1376 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7367, 72mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤)
74 peano2re 11281 . . . . . . . . . . . . 13 ((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7569, 74syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7675, 62nndivred 12174 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ)
7766simprd 495 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1))
78 ltmuldiv 11990 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
7957, 75, 63, 70, 78syl112anc 1376 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8077, 79mpbid 232 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8157, 76, 80ltled 11256 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8269, 62nndivred 12174 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ)
83 elicc2 13306 . . . . . . . . . . 11 ((((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8482, 76, 83syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8557, 73, 81, 84mpbir3and 1343 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8664flcld 13697 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ)
8722dyadval 25515 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8886, 60, 87syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8988fveq2d 6821 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩))
90 df-ov 7344 . . . . . . . . . 10 (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
9189, 90eqtr4di 2784 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
9285, 91eleqtrrd 2834 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
93 ffn 6646 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0))
9423, 93ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0)
95 fnovrn 7516 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0) ∧ (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9694, 95mp3an1 1450 . . . . . . . . . . 11 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9786, 60, 96syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
98 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ+)
9998rpred 12929 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ)
10057, 99resubcld 11540 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ)
101100rexrd 11157 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ*)
10257, 99readdcld 11136 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ)
103102rexrd 11157 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ*)
10482, 99readdcld 11136 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟) ∈ ℝ)
10569recnd 11135 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℂ)
106 1cnd 11102 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 1 ∈ ℂ)
10763recnd 11135 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℂ)
10862nnne0d 12170 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ≠ 0)
109105, 106, 107, 108divdird 11930 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))))
11062nnrecred 12171 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) ∈ ℝ)
111 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) < 𝑟)
112110, 99, 82, 111ltadd2dd 11267 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
113109, 112eqbrtrd 5108 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11457, 76, 104, 80, 113lttrd 11269 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11557, 99, 82ltsubaddd 11708 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟)))
116114, 115mpbird 257 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)))
11757, 110readdcld 11136 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) ∈ ℝ)
11882, 57, 110, 73leadd1dd 11726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) ≤ (𝑤 + (1 / (2↑𝑛))))
119109, 118eqbrtrd 5108 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ≤ (𝑤 + (1 / (2↑𝑛))))
120110, 99, 57, 111ltadd2dd 11267 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) < (𝑤 + 𝑟))
12176, 117, 102, 119, 120lelttrd 11266 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))
122 iccssioo 13310 . . . . . . . . . . . . 13 ((((𝑤𝑟) ∈ ℝ* ∧ (𝑤 + 𝑟) ∈ ℝ*) ∧ ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
123101, 103, 116, 121, 122syl22anc 838 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
12491, 123eqsstrd 3964 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
125 simplrr 777 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)
126124, 125sstrd 3940 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴)
127 fveq2 6817 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → ([,]‘𝑧) = ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
128127sseq1d 3961 . . . . . . . . . . 11 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
129128elrab 3642 . . . . . . . . . 10 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
13097, 126, 129sylanbrc 583 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})
131 funfvima2 7160 . . . . . . . . . 10 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13212, 32, 131mp2an 692 . . . . . . . . 9 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
133130, 132syl 17 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
134 elunii 4859 . . . . . . . 8 ((𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13592, 133, 134syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13656, 135rexlimddv 3139 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
137136expr 456 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13851, 137sylbid 240 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
139138rexlimdva 3133 . . 3 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → (∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
14043, 139mpd 15 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
14137, 140eqelssd 3951 1 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cin 3896  wss 3897  𝒫 cpw 4545  cop 4577   cuni 4854   class class class wbr 5086   × cxp 5609  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  ccom 5615  Fun wfun 6470   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  cmpo 7343  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  *cxr 11140   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cn 12120  2c2 12175  0cn0 12376  cz 12463  +crp 12885  (,)cioo 13240  [,]cicc 13243  cfl 13689  cexp 13963  abscabs 15136  topGenctg 17336  ∞Metcxmet 21271  ballcbl 21273  MetOpencmopn 21276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-icc 13247  df-fl 13691  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-bases 22856
This theorem is referenced by:  mblfinlem1  37697  mblfinlem2  37698
  Copyright terms: Public domain W3C validator