| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolfs2 | Structured version Visualization version GIF version | ||
| Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| ovolfs2.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
| Ref | Expression |
|---|---|
| ovolfs2 | ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfcl 25374 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)))) | |
| 2 | ovolioo 25476 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) → (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
| 4 | inss2 4204 | . . . . . . . . . 10 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ) | |
| 5 | rexpssxrxp 11226 | . . . . . . . . . 10 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
| 6 | 4, 5 | sstri 3959 | . . . . . . . . 9 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*) |
| 7 | ffvelcdm 7056 | . . . . . . . . 9 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
| 8 | 6, 7 | sselid 3947 | . . . . . . . 8 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ (ℝ* × ℝ*)) |
| 9 | 1st2nd2 8010 | . . . . . . . 8 ⊢ ((𝐹‘𝑛) ∈ (ℝ* × ℝ*) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
| 11 | 10 | fveq2d 6865 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹‘𝑛)) = ((,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉)) |
| 12 | df-ov 7393 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ((,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) | |
| 13 | 11, 12 | eqtr4di 2783 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹‘𝑛)) = ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) |
| 14 | 13 | fveq2d 6865 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((,)‘(𝐹‘𝑛))) = (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))))) |
| 15 | ovolfs2.1 | . . . . 5 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
| 16 | 15 | ovolfsval 25378 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
| 17 | 3, 14, 16 | 3eqtr4rd 2776 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = (vol*‘((,)‘(𝐹‘𝑛)))) |
| 18 | 17 | mpteq2dva 5203 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝑛 ∈ ℕ ↦ (𝐺‘𝑛)) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹‘𝑛))))) |
| 19 | 15 | ovolfsf 25379 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
| 20 | 19 | feqmptd 6932 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = (𝑛 ∈ ℕ ↦ (𝐺‘𝑛))) |
| 21 | id 22 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 22 | 21 | feqmptd 6932 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹‘𝑛))) |
| 23 | ioof 13415 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 25 | 24 | ffvelcdmda 7059 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ (ℝ* × ℝ*)) → ((,)‘𝑥) ∈ 𝒫 ℝ) |
| 26 | 24 | feqmptd 6932 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,) = (𝑥 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑥))) |
| 27 | ovolf 25390 | . . . . . 6 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol*:𝒫 ℝ⟶(0[,]+∞)) |
| 29 | 28 | feqmptd 6932 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol* = (𝑦 ∈ 𝒫 ℝ ↦ (vol*‘𝑦))) |
| 30 | fveq2 6861 | . . . 4 ⊢ (𝑦 = ((,)‘𝑥) → (vol*‘𝑦) = (vol*‘((,)‘𝑥))) | |
| 31 | 25, 26, 29, 30 | fmptco 7104 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (vol* ∘ (,)) = (𝑥 ∈ (ℝ* × ℝ*) ↦ (vol*‘((,)‘𝑥)))) |
| 32 | 2fveq3 6866 | . . 3 ⊢ (𝑥 = (𝐹‘𝑛) → (vol*‘((,)‘𝑥)) = (vol*‘((,)‘(𝐹‘𝑛)))) | |
| 33 | 8, 22, 31, 32 | fmptco 7104 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((vol* ∘ (,)) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹‘𝑛))))) |
| 34 | 18, 20, 33 | 3eqtr4d 2775 | 1 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 𝒫 cpw 4566 〈cop 4598 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 ℝcr 11074 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 − cmin 11412 ℕcn 12193 (,)cioo 13313 [,)cico 13315 [,]cicc 13316 abscabs 15207 vol*covol 25370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-rest 17392 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-cmp 23281 df-ovol 25372 df-vol 25373 |
| This theorem is referenced by: uniioombllem2 25491 |
| Copyright terms: Public domain | W3C validator |