MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfs2 Structured version   Visualization version   GIF version

Theorem ovolfs2 25625
Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
ovolfs2.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfs2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹))

Proof of Theorem ovolfs2
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolfcl 25520 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
2 ovolioo 25622 . . . . 5 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (vol*‘((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
31, 2syl 17 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4 inss2 4259 . . . . . . . . . 10 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 rexpssxrxp 11335 . . . . . . . . . 10 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
64, 5sstri 4018 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
7 ffvelcdm 7115 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
86, 7sselid 4006 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ* × ℝ*))
9 1st2nd2 8069 . . . . . . . 8 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
108, 9syl 17 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
1110fveq2d 6924 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
12 df-ov 7451 . . . . . 6 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
1311, 12eqtr4di 2798 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
1413fveq2d 6924 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((,)‘(𝐹𝑛))) = (vol*‘((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))))
15 ovolfs2.1 . . . . 5 𝐺 = ((abs ∘ − ) ∘ 𝐹)
1615ovolfsval 25524 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
173, 14, 163eqtr4rd 2791 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺𝑛) = (vol*‘((,)‘(𝐹𝑛))))
1817mpteq2dva 5266 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝑛 ∈ ℕ ↦ (𝐺𝑛)) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹𝑛)))))
1915ovolfsf 25525 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))
2019feqmptd 6990 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = (𝑛 ∈ ℕ ↦ (𝐺𝑛)))
21 id 22 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2221feqmptd 6990 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
23 ioof 13507 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2423a1i 11 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
2524ffvelcdmda 7118 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ (ℝ* × ℝ*)) → ((,)‘𝑥) ∈ 𝒫 ℝ)
2624feqmptd 6990 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,) = (𝑥 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑥)))
27 ovolf 25536 . . . . . 6 vol*:𝒫 ℝ⟶(0[,]+∞)
2827a1i 11 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol*:𝒫 ℝ⟶(0[,]+∞))
2928feqmptd 6990 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol* = (𝑦 ∈ 𝒫 ℝ ↦ (vol*‘𝑦)))
30 fveq2 6920 . . . 4 (𝑦 = ((,)‘𝑥) → (vol*‘𝑦) = (vol*‘((,)‘𝑥)))
3125, 26, 29, 30fmptco 7163 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (vol* ∘ (,)) = (𝑥 ∈ (ℝ* × ℝ*) ↦ (vol*‘((,)‘𝑥))))
32 2fveq3 6925 . . 3 (𝑥 = (𝐹𝑛) → (vol*‘((,)‘𝑥)) = (vol*‘((,)‘(𝐹𝑛))))
338, 22, 31, 32fmptco 7163 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((vol* ∘ (,)) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹𝑛)))))
3418, 20, 333eqtr4d 2790 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  𝒫 cpw 4622  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323  cle 11325  cmin 11520  cn 12293  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  abscabs 15283  vol*covol 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519
This theorem is referenced by:  uniioombllem2  25637
  Copyright terms: Public domain W3C validator