MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfs2 Structured version   Visualization version   GIF version

Theorem ovolfs2 24935
Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
ovolfs2.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfs2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹))

Proof of Theorem ovolfs2
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolfcl 24830 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
2 ovolioo 24932 . . . . 5 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (vol*‘((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
31, 2syl 17 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
4 inss2 4189 . . . . . . . . . 10 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 rexpssxrxp 11200 . . . . . . . . . 10 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
64, 5sstri 3953 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
7 ffvelcdm 7032 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
86, 7sselid 3942 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ* × ℝ*))
9 1st2nd2 7960 . . . . . . . 8 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
108, 9syl 17 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
1110fveq2d 6846 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
12 df-ov 7360 . . . . . 6 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
1311, 12eqtr4di 2794 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
1413fveq2d 6846 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((,)‘(𝐹𝑛))) = (vol*‘((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))))
15 ovolfs2.1 . . . . 5 𝐺 = ((abs ∘ − ) ∘ 𝐹)
1615ovolfsval 24834 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺𝑛) = ((2nd ‘(𝐹𝑛)) − (1st ‘(𝐹𝑛))))
173, 14, 163eqtr4rd 2787 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺𝑛) = (vol*‘((,)‘(𝐹𝑛))))
1817mpteq2dva 5205 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝑛 ∈ ℕ ↦ (𝐺𝑛)) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹𝑛)))))
1915ovolfsf 24835 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))
2019feqmptd 6910 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = (𝑛 ∈ ℕ ↦ (𝐺𝑛)))
21 id 22 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2221feqmptd 6910 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
23 ioof 13364 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2423a1i 11 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
2524ffvelcdmda 7035 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ (ℝ* × ℝ*)) → ((,)‘𝑥) ∈ 𝒫 ℝ)
2624feqmptd 6910 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,) = (𝑥 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑥)))
27 ovolf 24846 . . . . . 6 vol*:𝒫 ℝ⟶(0[,]+∞)
2827a1i 11 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol*:𝒫 ℝ⟶(0[,]+∞))
2928feqmptd 6910 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol* = (𝑦 ∈ 𝒫 ℝ ↦ (vol*‘𝑦)))
30 fveq2 6842 . . . 4 (𝑦 = ((,)‘𝑥) → (vol*‘𝑦) = (vol*‘((,)‘𝑥)))
3125, 26, 29, 30fmptco 7075 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (vol* ∘ (,)) = (𝑥 ∈ (ℝ* × ℝ*) ↦ (vol*‘((,)‘𝑥))))
32 2fveq3 6847 . . 3 (𝑥 = (𝐹𝑛) → (vol*‘((,)‘𝑥)) = (vol*‘((,)‘(𝐹𝑛))))
338, 22, 31, 32fmptco 7075 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((vol* ∘ (,)) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹𝑛)))))
3418, 20, 333eqtr4d 2786 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cin 3909  𝒫 cpw 4560  cop 4592   class class class wbr 5105  cmpt 5188   × cxp 5631  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  cr 11050  0cc0 11051  +∞cpnf 11186  *cxr 11188  cle 11190  cmin 11385  cn 12153  (,)cioo 13264  [,)cico 13266  [,]cicc 13267  abscabs 15119  vol*covol 24826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829
This theorem is referenced by:  uniioombllem2  24947
  Copyright terms: Public domain W3C validator