| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolfs2 | Structured version Visualization version GIF version | ||
| Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| ovolfs2.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
| Ref | Expression |
|---|---|
| ovolfs2 | ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfcl 25367 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)))) | |
| 2 | ovolioo 25469 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) → (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
| 4 | inss2 4201 | . . . . . . . . . 10 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ) | |
| 5 | rexpssxrxp 11219 | . . . . . . . . . 10 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
| 6 | 4, 5 | sstri 3956 | . . . . . . . . 9 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*) |
| 7 | ffvelcdm 7053 | . . . . . . . . 9 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
| 8 | 6, 7 | sselid 3944 | . . . . . . . 8 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ (ℝ* × ℝ*)) |
| 9 | 1st2nd2 8007 | . . . . . . . 8 ⊢ ((𝐹‘𝑛) ∈ (ℝ* × ℝ*) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
| 11 | 10 | fveq2d 6862 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹‘𝑛)) = ((,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉)) |
| 12 | df-ov 7390 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ((,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) | |
| 13 | 11, 12 | eqtr4di 2782 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹‘𝑛)) = ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) |
| 14 | 13 | fveq2d 6862 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((,)‘(𝐹‘𝑛))) = (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))))) |
| 15 | ovolfs2.1 | . . . . 5 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
| 16 | 15 | ovolfsval 25371 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
| 17 | 3, 14, 16 | 3eqtr4rd 2775 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = (vol*‘((,)‘(𝐹‘𝑛)))) |
| 18 | 17 | mpteq2dva 5200 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝑛 ∈ ℕ ↦ (𝐺‘𝑛)) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹‘𝑛))))) |
| 19 | 15 | ovolfsf 25372 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
| 20 | 19 | feqmptd 6929 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = (𝑛 ∈ ℕ ↦ (𝐺‘𝑛))) |
| 21 | id 22 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 22 | 21 | feqmptd 6929 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹‘𝑛))) |
| 23 | ioof 13408 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 25 | 24 | ffvelcdmda 7056 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ (ℝ* × ℝ*)) → ((,)‘𝑥) ∈ 𝒫 ℝ) |
| 26 | 24 | feqmptd 6929 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,) = (𝑥 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑥))) |
| 27 | ovolf 25383 | . . . . . 6 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol*:𝒫 ℝ⟶(0[,]+∞)) |
| 29 | 28 | feqmptd 6929 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol* = (𝑦 ∈ 𝒫 ℝ ↦ (vol*‘𝑦))) |
| 30 | fveq2 6858 | . . . 4 ⊢ (𝑦 = ((,)‘𝑥) → (vol*‘𝑦) = (vol*‘((,)‘𝑥))) | |
| 31 | 25, 26, 29, 30 | fmptco 7101 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (vol* ∘ (,)) = (𝑥 ∈ (ℝ* × ℝ*) ↦ (vol*‘((,)‘𝑥)))) |
| 32 | 2fveq3 6863 | . . 3 ⊢ (𝑥 = (𝐹‘𝑛) → (vol*‘((,)‘𝑥)) = (vol*‘((,)‘(𝐹‘𝑛)))) | |
| 33 | 8, 22, 31, 32 | fmptco 7101 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((vol* ∘ (,)) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹‘𝑛))))) |
| 34 | 18, 20, 33 | 3eqtr4d 2774 | 1 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 𝒫 cpw 4563 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 − cmin 11405 ℕcn 12186 (,)cioo 13306 [,)cico 13308 [,]cicc 13309 abscabs 15200 vol*covol 25363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-ovol 25365 df-vol 25366 |
| This theorem is referenced by: uniioombllem2 25484 |
| Copyright terms: Public domain | W3C validator |