| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolfs2 | Structured version Visualization version GIF version | ||
| Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| ovolfs2.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
| Ref | Expression |
|---|---|
| ovolfs2 | ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfcl 25395 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛)))) | |
| 2 | ovolioo 25497 | . . . . 5 ⊢ (((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) → (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
| 4 | inss2 4188 | . . . . . . . . . 10 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ) | |
| 5 | rexpssxrxp 11157 | . . . . . . . . . 10 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
| 6 | 4, 5 | sstri 3944 | . . . . . . . . 9 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*) |
| 7 | ffvelcdm 7014 | . . . . . . . . 9 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ( ≤ ∩ (ℝ × ℝ))) | |
| 8 | 6, 7 | sselid 3932 | . . . . . . . 8 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ (ℝ* × ℝ*)) |
| 9 | 1st2nd2 7960 | . . . . . . . 8 ⊢ ((𝐹‘𝑛) ∈ (ℝ* × ℝ*) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
| 11 | 10 | fveq2d 6826 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹‘𝑛)) = ((,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉)) |
| 12 | df-ov 7349 | . . . . . 6 ⊢ ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))) = ((,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) | |
| 13 | 11, 12 | eqtr4di 2784 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹‘𝑛)) = ((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛)))) |
| 14 | 13 | fveq2d 6826 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (vol*‘((,)‘(𝐹‘𝑛))) = (vol*‘((1st ‘(𝐹‘𝑛))(,)(2nd ‘(𝐹‘𝑛))))) |
| 15 | ovolfs2.1 | . . . . 5 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
| 16 | 15 | ovolfsval 25399 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
| 17 | 3, 14, 16 | 3eqtr4rd 2777 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = (vol*‘((,)‘(𝐹‘𝑛)))) |
| 18 | 17 | mpteq2dva 5184 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝑛 ∈ ℕ ↦ (𝐺‘𝑛)) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹‘𝑛))))) |
| 19 | 15 | ovolfsf 25400 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
| 20 | 19 | feqmptd 6890 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = (𝑛 ∈ ℕ ↦ (𝐺‘𝑛))) |
| 21 | id 22 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 22 | 21 | feqmptd 6890 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹‘𝑛))) |
| 23 | ioof 13347 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 25 | 24 | ffvelcdmda 7017 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ (ℝ* × ℝ*)) → ((,)‘𝑥) ∈ 𝒫 ℝ) |
| 26 | 24 | feqmptd 6890 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (,) = (𝑥 ∈ (ℝ* × ℝ*) ↦ ((,)‘𝑥))) |
| 27 | ovolf 25411 | . . . . . 6 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol*:𝒫 ℝ⟶(0[,]+∞)) |
| 29 | 28 | feqmptd 6890 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → vol* = (𝑦 ∈ 𝒫 ℝ ↦ (vol*‘𝑦))) |
| 30 | fveq2 6822 | . . . 4 ⊢ (𝑦 = ((,)‘𝑥) → (vol*‘𝑦) = (vol*‘((,)‘𝑥))) | |
| 31 | 25, 26, 29, 30 | fmptco 7062 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (vol* ∘ (,)) = (𝑥 ∈ (ℝ* × ℝ*) ↦ (vol*‘((,)‘𝑥)))) |
| 32 | 2fveq3 6827 | . . 3 ⊢ (𝑥 = (𝐹‘𝑛) → (vol*‘((,)‘𝑥)) = (vol*‘((,)‘(𝐹‘𝑛)))) | |
| 33 | 8, 22, 31, 32 | fmptco 7062 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((vol* ∘ (,)) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ (vol*‘((,)‘(𝐹‘𝑛))))) |
| 34 | 18, 20, 33 | 3eqtr4d 2776 | 1 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 𝒫 cpw 4550 〈cop 4582 class class class wbr 5091 ↦ cmpt 5172 × cxp 5614 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 ℝcr 11005 0cc0 11006 +∞cpnf 11143 ℝ*cxr 11145 ≤ cle 11147 − cmin 11344 ℕcn 12125 (,)cioo 13245 [,)cico 13247 [,]cicc 13248 abscabs 15141 vol*covol 25391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-rest 17326 df-topgen 17347 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-top 22810 df-topon 22827 df-bases 22862 df-cmp 23303 df-ovol 25393 df-vol 25394 |
| This theorem is referenced by: uniioombllem2 25512 |
| Copyright terms: Public domain | W3C validator |