Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elgrplsmsn Structured version   Visualization version   GIF version

Theorem elgrplsmsn 33006
Description: Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypotheses
Ref Expression
elgrplsmsn.1 𝐵 = (Base‘𝐺)
elgrplsmsn.2 + = (+g𝐺)
elgrplsmsn.3 = (LSSum‘𝐺)
elgrplsmsn.4 (𝜑𝐺𝑉)
elgrplsmsn.5 (𝜑𝐴𝐵)
elgrplsmsn.6 (𝜑𝑋𝐵)
Assertion
Ref Expression
elgrplsmsn (𝜑 → (𝑍 ∈ (𝐴 {𝑋}) ↔ ∃𝑥𝐴 𝑍 = (𝑥 + 𝑋)))
Distinct variable groups:   𝑥, +   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   (𝑥)   𝑉(𝑥)

Proof of Theorem elgrplsmsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elgrplsmsn.4 . . 3 (𝜑𝐺𝑉)
2 elgrplsmsn.5 . . 3 (𝜑𝐴𝐵)
3 elgrplsmsn.6 . . . 4 (𝜑𝑋𝐵)
43snssd 4807 . . 3 (𝜑 → {𝑋} ⊆ 𝐵)
5 elgrplsmsn.1 . . . 4 𝐵 = (Base‘𝐺)
6 elgrplsmsn.2 . . . 4 + = (+g𝐺)
7 elgrplsmsn.3 . . . 4 = (LSSum‘𝐺)
85, 6, 7lsmelvalx 19560 . . 3 ((𝐺𝑉𝐴𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝑍 ∈ (𝐴 {𝑋}) ↔ ∃𝑥𝐴𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦)))
91, 2, 4, 8syl3anc 1368 . 2 (𝜑 → (𝑍 ∈ (𝐴 {𝑋}) ↔ ∃𝑥𝐴𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦)))
10 oveq2 7413 . . . . . 6 (𝑦 = 𝑋 → (𝑥 + 𝑦) = (𝑥 + 𝑋))
1110eqeq2d 2737 . . . . 5 (𝑦 = 𝑋 → (𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋)))
1211rexsng 4673 . . . 4 (𝑋𝐵 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋)))
133, 12syl 17 . . 3 (𝜑 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋)))
1413rexbidv 3172 . 2 (𝜑 → (∃𝑥𝐴𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ ∃𝑥𝐴 𝑍 = (𝑥 + 𝑋)))
159, 14bitrd 279 1 (𝜑 → (𝑍 ∈ (𝐴 {𝑋}) ↔ ∃𝑥𝐴 𝑍 = (𝑥 + 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wrex 3064  wss 3943  {csn 4623  cfv 6537  (class class class)co 7405  Basecbs 17153  +gcplusg 17206  LSSumclsm 19554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-lsm 19556
This theorem is referenced by:  lsmsnorb  33007  lsmsnpridl  33014  mxidlprm  33092
  Copyright terms: Public domain W3C validator