| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elgrplsmsn | Structured version Visualization version GIF version | ||
| Description: Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| Ref | Expression |
|---|---|
| elgrplsmsn.1 | ⊢ 𝐵 = (Base‘𝐺) |
| elgrplsmsn.2 | ⊢ + = (+g‘𝐺) |
| elgrplsmsn.3 | ⊢ ⊕ = (LSSum‘𝐺) |
| elgrplsmsn.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| elgrplsmsn.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| elgrplsmsn.6 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elgrplsmsn | ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgrplsmsn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 2 | elgrplsmsn.5 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | elgrplsmsn.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | 3 | snssd 4776 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 5 | elgrplsmsn.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | elgrplsmsn.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 7 | elgrplsmsn.3 | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 8 | 5, 6, 7 | lsmelvalx 19577 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
| 9 | 1, 2, 4, 8 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
| 10 | oveq2 7398 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑥 + 𝑦) = (𝑥 + 𝑋)) | |
| 11 | 10 | eqeq2d 2741 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
| 12 | 11 | rexsng 4643 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
| 13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
| 14 | 13 | rexbidv 3158 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
| 15 | 9, 14 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 LSSumclsm 19571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-lsm 19573 |
| This theorem is referenced by: lsmsnorb 33369 lsmsnpridl 33376 mxidlprm 33448 |
| Copyright terms: Public domain | W3C validator |