Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elgrplsmsn | Structured version Visualization version GIF version |
Description: Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
Ref | Expression |
---|---|
elgrplsmsn.1 | ⊢ 𝐵 = (Base‘𝐺) |
elgrplsmsn.2 | ⊢ + = (+g‘𝐺) |
elgrplsmsn.3 | ⊢ ⊕ = (LSSum‘𝐺) |
elgrplsmsn.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
elgrplsmsn.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
elgrplsmsn.6 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
elgrplsmsn | ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrplsmsn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
2 | elgrplsmsn.5 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | elgrplsmsn.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
4 | 3 | snssd 4739 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
5 | elgrplsmsn.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
6 | elgrplsmsn.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
7 | elgrplsmsn.3 | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
8 | 5, 6, 7 | lsmelvalx 19160 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
9 | 1, 2, 4, 8 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
10 | oveq2 7263 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑥 + 𝑦) = (𝑥 + 𝑋)) | |
11 | 10 | eqeq2d 2749 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
12 | 11 | rexsng 4607 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
14 | 13 | rexbidv 3225 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
15 | 9, 14 | bitrd 278 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 LSSumclsm 19154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-lsm 19156 |
This theorem is referenced by: lsmsnorb 31481 lsmsnpridl 31488 mxidlprm 31542 |
Copyright terms: Public domain | W3C validator |