![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elgrplsmsn | Structured version Visualization version GIF version |
Description: Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
Ref | Expression |
---|---|
elgrplsmsn.1 | ⊢ 𝐵 = (Base‘𝐺) |
elgrplsmsn.2 | ⊢ + = (+g‘𝐺) |
elgrplsmsn.3 | ⊢ ⊕ = (LSSum‘𝐺) |
elgrplsmsn.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
elgrplsmsn.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
elgrplsmsn.6 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
elgrplsmsn | ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrplsmsn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
2 | elgrplsmsn.5 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | elgrplsmsn.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
4 | 3 | snssd 4808 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
5 | elgrplsmsn.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
6 | elgrplsmsn.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
7 | elgrplsmsn.3 | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
8 | 5, 6, 7 | lsmelvalx 19597 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
9 | 1, 2, 4, 8 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
10 | oveq2 7423 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑥 + 𝑦) = (𝑥 + 𝑋)) | |
11 | 10 | eqeq2d 2736 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
12 | 11 | rexsng 4674 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
14 | 13 | rexbidv 3169 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
15 | 9, 14 | bitrd 278 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 ⊆ wss 3940 {csn 4624 ‘cfv 6542 (class class class)co 7415 Basecbs 17177 +gcplusg 17230 LSSumclsm 19591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-lsm 19593 |
This theorem is referenced by: lsmsnorb 33148 lsmsnpridl 33155 mxidlprm 33231 |
Copyright terms: Public domain | W3C validator |