![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elgrplsmsn | Structured version Visualization version GIF version |
Description: Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
Ref | Expression |
---|---|
elgrplsmsn.1 | ⊢ 𝐵 = (Base‘𝐺) |
elgrplsmsn.2 | ⊢ + = (+g‘𝐺) |
elgrplsmsn.3 | ⊢ ⊕ = (LSSum‘𝐺) |
elgrplsmsn.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
elgrplsmsn.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
elgrplsmsn.6 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
elgrplsmsn | ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrplsmsn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
2 | elgrplsmsn.5 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | elgrplsmsn.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
4 | 3 | snssd 4811 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
5 | elgrplsmsn.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
6 | elgrplsmsn.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
7 | elgrplsmsn.3 | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
8 | 5, 6, 7 | lsmelvalx 19501 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
9 | 1, 2, 4, 8 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
10 | oveq2 7412 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑥 + 𝑦) = (𝑥 + 𝑋)) | |
11 | 10 | eqeq2d 2744 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
12 | 11 | rexsng 4677 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
14 | 13 | rexbidv 3179 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
15 | 9, 14 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ⊆ wss 3947 {csn 4627 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 +gcplusg 17193 LSSumclsm 19495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7970 df-2nd 7971 df-lsm 19497 |
This theorem is referenced by: lsmsnorb 32466 lsmsnpridl 32473 mxidlprm 32544 |
Copyright terms: Public domain | W3C validator |