| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elgrplsmsn | Structured version Visualization version GIF version | ||
| Description: Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| Ref | Expression |
|---|---|
| elgrplsmsn.1 | ⊢ 𝐵 = (Base‘𝐺) |
| elgrplsmsn.2 | ⊢ + = (+g‘𝐺) |
| elgrplsmsn.3 | ⊢ ⊕ = (LSSum‘𝐺) |
| elgrplsmsn.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| elgrplsmsn.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| elgrplsmsn.6 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elgrplsmsn | ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgrplsmsn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 2 | elgrplsmsn.5 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | elgrplsmsn.6 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | 3 | snssd 4790 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 5 | elgrplsmsn.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | elgrplsmsn.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 7 | elgrplsmsn.3 | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 8 | 5, 6, 7 | lsmelvalx 19626 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
| 9 | 1, 2, 4, 8 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦))) |
| 10 | oveq2 7418 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑥 + 𝑦) = (𝑥 + 𝑋)) | |
| 11 | 10 | eqeq2d 2747 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
| 12 | 11 | rexsng 4657 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
| 13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ 𝑍 = (𝑥 + 𝑋))) |
| 14 | 13 | rexbidv 3165 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ {𝑋}𝑍 = (𝑥 + 𝑦) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
| 15 | 9, 14 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝐴 ⊕ {𝑋}) ↔ ∃𝑥 ∈ 𝐴 𝑍 = (𝑥 + 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 {csn 4606 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 LSSumclsm 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-lsm 19622 |
| This theorem is referenced by: lsmsnorb 33411 lsmsnpridl 33418 mxidlprm 33490 |
| Copyright terms: Public domain | W3C validator |