| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsn | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 37108 and bj-restsnid 37110. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restsn | ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5411 | . . . 4 ⊢ {𝑌} ∈ V | |
| 2 | elrest 17446 | . . . 4 ⊢ (({𝑌} ∈ V ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴))) |
| 4 | velsn 4622 | . . . . 5 ⊢ (𝑥 ∈ {(𝑦 ∩ 𝐴)} ↔ 𝑥 = (𝑦 ∩ 𝐴)) | |
| 5 | ineq1 4193 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐴) = (𝑌 ∩ 𝐴)) | |
| 6 | 5 | sneqd 4618 | . . . . . 6 ⊢ (𝑦 = 𝑌 → {(𝑦 ∩ 𝐴)} = {(𝑌 ∩ 𝐴)}) |
| 7 | 6 | eleq2d 2821 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑥 ∈ {(𝑦 ∩ 𝐴)} ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
| 8 | 4, 7 | bitr3id 285 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
| 9 | 8 | rexsng 4657 | . . 3 ⊢ (𝑌 ∈ 𝑉 → (∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
| 10 | 3, 9 | sylan9bbr 510 | . 2 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
| 11 | 10 | eqrdv 2734 | 1 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 ∩ cin 3930 {csn 4606 (class class class)co 7410 ↾t crest 17439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-rest 17441 |
| This theorem is referenced by: bj-restsnss 37106 bj-restsnss2 37107 |
| Copyright terms: Public domain | W3C validator |