Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsn | Structured version Visualization version GIF version |
Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 35183 and bj-restsnid 35185. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsn | ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5349 | . . . 4 ⊢ {𝑌} ∈ V | |
2 | elrest 17055 | . . . 4 ⊢ (({𝑌} ∈ V ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴))) |
4 | velsn 4574 | . . . . 5 ⊢ (𝑥 ∈ {(𝑦 ∩ 𝐴)} ↔ 𝑥 = (𝑦 ∩ 𝐴)) | |
5 | ineq1 4136 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐴) = (𝑌 ∩ 𝐴)) | |
6 | 5 | sneqd 4570 | . . . . . 6 ⊢ (𝑦 = 𝑌 → {(𝑦 ∩ 𝐴)} = {(𝑌 ∩ 𝐴)}) |
7 | 6 | eleq2d 2824 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑥 ∈ {(𝑦 ∩ 𝐴)} ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
8 | 4, 7 | bitr3id 284 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
9 | 8 | rexsng 4607 | . . 3 ⊢ (𝑌 ∈ 𝑉 → (∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
10 | 3, 9 | sylan9bbr 510 | . 2 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
11 | 10 | eqrdv 2736 | 1 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 {csn 4558 (class class class)co 7255 ↾t crest 17048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rest 17050 |
This theorem is referenced by: bj-restsnss 35181 bj-restsnss2 35182 |
Copyright terms: Public domain | W3C validator |