![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsn | Structured version Visualization version GIF version |
Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 35954 and bj-restsnid 35956. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsn | ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5430 | . . . 4 ⊢ {𝑌} ∈ V | |
2 | elrest 17369 | . . . 4 ⊢ (({𝑌} ∈ V ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 1, 2 | mpan 688 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴))) |
4 | velsn 4643 | . . . . 5 ⊢ (𝑥 ∈ {(𝑦 ∩ 𝐴)} ↔ 𝑥 = (𝑦 ∩ 𝐴)) | |
5 | ineq1 4204 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐴) = (𝑌 ∩ 𝐴)) | |
6 | 5 | sneqd 4639 | . . . . . 6 ⊢ (𝑦 = 𝑌 → {(𝑦 ∩ 𝐴)} = {(𝑌 ∩ 𝐴)}) |
7 | 6 | eleq2d 2819 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑥 ∈ {(𝑦 ∩ 𝐴)} ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
8 | 4, 7 | bitr3id 284 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
9 | 8 | rexsng 4677 | . . 3 ⊢ (𝑌 ∈ 𝑉 → (∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
10 | 3, 9 | sylan9bbr 511 | . 2 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
11 | 10 | eqrdv 2730 | 1 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∩ cin 3946 {csn 4627 (class class class)co 7405 ↾t crest 17362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rest 17364 |
This theorem is referenced by: bj-restsnss 35952 bj-restsnss2 35953 |
Copyright terms: Public domain | W3C validator |