Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsn Structured version   Visualization version   GIF version

Theorem bj-restsn 37066
Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 37069 and bj-restsnid 37071. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsn ((𝑌𝑉𝐴𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})

Proof of Theorem bj-restsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5375 . . . 4 {𝑌} ∈ V
2 elrest 17331 . . . 4 (({𝑌} ∈ V ∧ 𝐴𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴)))
31, 2mpan 690 . . 3 (𝐴𝑊 → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴)))
4 velsn 4593 . . . . 5 (𝑥 ∈ {(𝑦𝐴)} ↔ 𝑥 = (𝑦𝐴))
5 ineq1 4164 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝐴) = (𝑌𝐴))
65sneqd 4589 . . . . . 6 (𝑦 = 𝑌 → {(𝑦𝐴)} = {(𝑌𝐴)})
76eleq2d 2814 . . . . 5 (𝑦 = 𝑌 → (𝑥 ∈ {(𝑦𝐴)} ↔ 𝑥 ∈ {(𝑌𝐴)}))
84, 7bitr3id 285 . . . 4 (𝑦 = 𝑌 → (𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
98rexsng 4628 . . 3 (𝑌𝑉 → (∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
103, 9sylan9bbr 510 . 2 ((𝑌𝑉𝐴𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
1110eqrdv 2727 1 ((𝑌𝑉𝐴𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  cin 3902  {csn 4577  (class class class)co 7349  t crest 17324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-rest 17326
This theorem is referenced by:  bj-restsnss  37067  bj-restsnss2  37068
  Copyright terms: Public domain W3C validator