Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsn Structured version   Visualization version   GIF version

Theorem bj-restsn 35253
Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 35256 and bj-restsnid 35258. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsn ((𝑌𝑉𝐴𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})

Proof of Theorem bj-restsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5354 . . . 4 {𝑌} ∈ V
2 elrest 17138 . . . 4 (({𝑌} ∈ V ∧ 𝐴𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴)))
31, 2mpan 687 . . 3 (𝐴𝑊 → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴)))
4 velsn 4577 . . . . 5 (𝑥 ∈ {(𝑦𝐴)} ↔ 𝑥 = (𝑦𝐴))
5 ineq1 4139 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝐴) = (𝑌𝐴))
65sneqd 4573 . . . . . 6 (𝑦 = 𝑌 → {(𝑦𝐴)} = {(𝑌𝐴)})
76eleq2d 2824 . . . . 5 (𝑦 = 𝑌 → (𝑥 ∈ {(𝑦𝐴)} ↔ 𝑥 ∈ {(𝑌𝐴)}))
84, 7bitr3id 285 . . . 4 (𝑦 = 𝑌 → (𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
98rexsng 4610 . . 3 (𝑌𝑉 → (∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
103, 9sylan9bbr 511 . 2 ((𝑌𝑉𝐴𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
1110eqrdv 2736 1 ((𝑌𝑉𝐴𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cin 3886  {csn 4561  (class class class)co 7275  t crest 17131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rest 17133
This theorem is referenced by:  bj-restsnss  35254  bj-restsnss2  35255
  Copyright terms: Public domain W3C validator