Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsn Structured version   Visualization version   GIF version

Theorem bj-restsn 35180
Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 35183 and bj-restsnid 35185. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsn ((𝑌𝑉𝐴𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})

Proof of Theorem bj-restsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . . 4 {𝑌} ∈ V
2 elrest 17055 . . . 4 (({𝑌} ∈ V ∧ 𝐴𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴)))
31, 2mpan 686 . . 3 (𝐴𝑊 → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴)))
4 velsn 4574 . . . . 5 (𝑥 ∈ {(𝑦𝐴)} ↔ 𝑥 = (𝑦𝐴))
5 ineq1 4136 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝐴) = (𝑌𝐴))
65sneqd 4570 . . . . . 6 (𝑦 = 𝑌 → {(𝑦𝐴)} = {(𝑌𝐴)})
76eleq2d 2824 . . . . 5 (𝑦 = 𝑌 → (𝑥 ∈ {(𝑦𝐴)} ↔ 𝑥 ∈ {(𝑌𝐴)}))
84, 7bitr3id 284 . . . 4 (𝑦 = 𝑌 → (𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
98rexsng 4607 . . 3 (𝑌𝑉 → (∃𝑦 ∈ {𝑌}𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
103, 9sylan9bbr 510 . 2 ((𝑌𝑉𝐴𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ 𝑥 ∈ {(𝑌𝐴)}))
1110eqrdv 2736 1 ((𝑌𝑉𝐴𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cin 3882  {csn 4558  (class class class)co 7255  t crest 17048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rest 17050
This theorem is referenced by:  bj-restsnss  35181  bj-restsnss2  35182
  Copyright terms: Public domain W3C validator