Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsn | Structured version Visualization version GIF version |
Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 35256 and bj-restsnid 35258. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsn | ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . . 4 ⊢ {𝑌} ∈ V | |
2 | elrest 17138 | . . . 4 ⊢ (({𝑌} ∈ V ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ ∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴))) |
4 | velsn 4577 | . . . . 5 ⊢ (𝑥 ∈ {(𝑦 ∩ 𝐴)} ↔ 𝑥 = (𝑦 ∩ 𝐴)) | |
5 | ineq1 4139 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐴) = (𝑌 ∩ 𝐴)) | |
6 | 5 | sneqd 4573 | . . . . . 6 ⊢ (𝑦 = 𝑌 → {(𝑦 ∩ 𝐴)} = {(𝑌 ∩ 𝐴)}) |
7 | 6 | eleq2d 2824 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑥 ∈ {(𝑦 ∩ 𝐴)} ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
8 | 4, 7 | bitr3id 285 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
9 | 8 | rexsng 4610 | . . 3 ⊢ (𝑌 ∈ 𝑉 → (∃𝑦 ∈ {𝑌}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
10 | 3, 9 | sylan9bbr 511 | . 2 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ ({𝑌} ↾t 𝐴) ↔ 𝑥 ∈ {(𝑌 ∩ 𝐴)})) |
11 | 10 | eqrdv 2736 | 1 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ∩ cin 3886 {csn 4561 (class class class)co 7275 ↾t crest 17131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-rest 17133 |
This theorem is referenced by: bj-restsnss 35254 bj-restsnss2 35255 |
Copyright terms: Public domain | W3C validator |