| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1loopgrvd0 | Structured version Visualization version GIF version | ||
| Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.) |
| Ref | Expression |
|---|---|
| 1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
| 1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
| 1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
| 1loopgrvd0.k | ⊢ (𝜑 → 𝐾 ∈ (𝑉 ∖ {𝑁})) |
| Ref | Expression |
|---|---|
| 1loopgrvd0 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgrvd0.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝑉 ∖ {𝑁})) | |
| 2 | 1 | eldifbd 3929 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∈ {𝑁}) |
| 3 | 1loopgruspgr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 4 | snex 5393 | . . . . . 6 ⊢ {𝑁} ∈ V | |
| 5 | fvsng 7156 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ {𝑁} ∈ V) → ({〈𝐴, {𝑁}〉}‘𝐴) = {𝑁}) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ({〈𝐴, {𝑁}〉}‘𝐴) = {𝑁}) |
| 7 | 6 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴) ↔ 𝐾 ∈ {𝑁})) |
| 8 | 2, 7 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴)) |
| 9 | 1loopgruspgr.i | . . . . . . 7 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
| 10 | 9 | dmeqd 5871 | . . . . . 6 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝑁}〉}) |
| 11 | dmsnopg 6188 | . . . . . . 7 ⊢ ({𝑁} ∈ V → dom {〈𝐴, {𝑁}〉} = {𝐴}) | |
| 12 | 4, 11 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, {𝑁}〉} = {𝐴}) |
| 13 | 10, 12 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) |
| 14 | 9 | fveq1d 6862 | . . . . . 6 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝑖) = ({〈𝐴, {𝑁}〉}‘𝑖)) |
| 15 | 14 | eleq2d 2815 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖))) |
| 16 | 13, 15 | rexeqbidv 3322 | . . . 4 ⊢ (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ ∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖))) |
| 17 | fveq2 6860 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → ({〈𝐴, {𝑁}〉}‘𝑖) = ({〈𝐴, {𝑁}〉}‘𝐴)) | |
| 18 | 17 | eleq2d 2815 | . . . . . 6 ⊢ (𝑖 = 𝐴 → (𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
| 19 | 18 | rexsng 4642 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
| 20 | 3, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
| 21 | 16, 20 | bitrd 279 | . . 3 ⊢ (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
| 22 | 8, 21 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)) |
| 23 | 1 | eldifad 3928 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| 24 | 1loopgruspgr.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
| 25 | 24 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ 𝑉)) |
| 26 | 23, 25 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (Vtx‘𝐺)) |
| 27 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 28 | eqid 2730 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 29 | eqid 2730 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 30 | 27, 28, 29 | vtxd0nedgb 29422 | . . 3 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 31 | 26, 30 | syl 17 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 32 | 22, 31 | mpbird 257 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∖ cdif 3913 {csn 4591 〈cop 4597 dom cdm 5640 ‘cfv 6513 0cc0 11074 Vtxcvtx 28929 iEdgciedg 28930 VtxDegcvtxdg 29399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-xnn0 12522 df-z 12536 df-uz 12800 df-xadd 13079 df-fz 13475 df-hash 14302 df-vtxdg 29400 |
| This theorem is referenced by: 1egrvtxdg0 29445 eupth2lem3lem3 30165 |
| Copyright terms: Public domain | W3C validator |