MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrvd0 Structured version   Visualization version   GIF version

Theorem 1loopgrvd0 27286
Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
1loopgrvd0.k (𝜑𝐾 ∈ (𝑉 ∖ {𝑁}))
Assertion
Ref Expression
1loopgrvd0 (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0)

Proof of Theorem 1loopgrvd0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1loopgrvd0.k . . . . 5 (𝜑𝐾 ∈ (𝑉 ∖ {𝑁}))
21eldifbd 3949 . . . 4 (𝜑 → ¬ 𝐾 ∈ {𝑁})
3 1loopgruspgr.a . . . . . 6 (𝜑𝐴𝑋)
4 snex 5332 . . . . . 6 {𝑁} ∈ V
5 fvsng 6942 . . . . . 6 ((𝐴𝑋 ∧ {𝑁} ∈ V) → ({⟨𝐴, {𝑁}⟩}‘𝐴) = {𝑁})
63, 4, 5sylancl 588 . . . . 5 (𝜑 → ({⟨𝐴, {𝑁}⟩}‘𝐴) = {𝑁})
76eleq2d 2898 . . . 4 (𝜑 → (𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴) ↔ 𝐾 ∈ {𝑁}))
82, 7mtbird 327 . . 3 (𝜑 → ¬ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴))
9 1loopgruspgr.i . . . . . . 7 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
109dmeqd 5774 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝑁}⟩})
11 dmsnopg 6070 . . . . . . 7 ({𝑁} ∈ V → dom {⟨𝐴, {𝑁}⟩} = {𝐴})
124, 11mp1i 13 . . . . . 6 (𝜑 → dom {⟨𝐴, {𝑁}⟩} = {𝐴})
1310, 12eqtrd 2856 . . . . 5 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
149fveq1d 6672 . . . . . 6 (𝜑 → ((iEdg‘𝐺)‘𝑖) = ({⟨𝐴, {𝑁}⟩}‘𝑖))
1514eleq2d 2898 . . . . 5 (𝜑 → (𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖)))
1613, 15rexeqbidv 3402 . . . 4 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ ∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖)))
17 fveq2 6670 . . . . . . 7 (𝑖 = 𝐴 → ({⟨𝐴, {𝑁}⟩}‘𝑖) = ({⟨𝐴, {𝑁}⟩}‘𝐴))
1817eleq2d 2898 . . . . . 6 (𝑖 = 𝐴 → (𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
1918rexsng 4614 . . . . 5 (𝐴𝑋 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
203, 19syl 17 . . . 4 (𝜑 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
2116, 20bitrd 281 . . 3 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
228, 21mtbird 327 . 2 (𝜑 → ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))
231eldifad 3948 . . . 4 (𝜑𝐾𝑉)
24 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2524eleq2d 2898 . . . 4 (𝜑 → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾𝑉))
2623, 25mpbird 259 . . 3 (𝜑𝐾 ∈ (Vtx‘𝐺))
27 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
28 eqid 2821 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
29 eqid 2821 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3027, 28, 29vtxd0nedgb 27270 . . 3 (𝐾 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)))
3126, 30syl 17 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)))
3222, 31mpbird 259 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208   = wceq 1537  wcel 2114  wrex 3139  Vcvv 3494  cdif 3933  {csn 4567  cop 4573  dom cdm 5555  cfv 6355  0cc0 10537  Vtxcvtx 26781  iEdgciedg 26782  VtxDegcvtxdg 27247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-xadd 12509  df-fz 12894  df-hash 13692  df-vtxdg 27248
This theorem is referenced by:  1egrvtxdg0  27293  eupth2lem3lem3  28009
  Copyright terms: Public domain W3C validator