MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrvd0 Structured version   Visualization version   GIF version

Theorem 1loopgrvd0 29432
Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
1loopgrvd0.k (𝜑𝐾 ∈ (𝑉 ∖ {𝑁}))
Assertion
Ref Expression
1loopgrvd0 (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0)

Proof of Theorem 1loopgrvd0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1loopgrvd0.k . . . . 5 (𝜑𝐾 ∈ (𝑉 ∖ {𝑁}))
21eldifbd 3927 . . . 4 (𝜑 → ¬ 𝐾 ∈ {𝑁})
3 1loopgruspgr.a . . . . . 6 (𝜑𝐴𝑋)
4 snex 5391 . . . . . 6 {𝑁} ∈ V
5 fvsng 7154 . . . . . 6 ((𝐴𝑋 ∧ {𝑁} ∈ V) → ({⟨𝐴, {𝑁}⟩}‘𝐴) = {𝑁})
63, 4, 5sylancl 586 . . . . 5 (𝜑 → ({⟨𝐴, {𝑁}⟩}‘𝐴) = {𝑁})
76eleq2d 2814 . . . 4 (𝜑 → (𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴) ↔ 𝐾 ∈ {𝑁}))
82, 7mtbird 325 . . 3 (𝜑 → ¬ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴))
9 1loopgruspgr.i . . . . . . 7 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
109dmeqd 5869 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝑁}⟩})
11 dmsnopg 6186 . . . . . . 7 ({𝑁} ∈ V → dom {⟨𝐴, {𝑁}⟩} = {𝐴})
124, 11mp1i 13 . . . . . 6 (𝜑 → dom {⟨𝐴, {𝑁}⟩} = {𝐴})
1310, 12eqtrd 2764 . . . . 5 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
149fveq1d 6860 . . . . . 6 (𝜑 → ((iEdg‘𝐺)‘𝑖) = ({⟨𝐴, {𝑁}⟩}‘𝑖))
1514eleq2d 2814 . . . . 5 (𝜑 → (𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖)))
1613, 15rexeqbidv 3320 . . . 4 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ ∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖)))
17 fveq2 6858 . . . . . . 7 (𝑖 = 𝐴 → ({⟨𝐴, {𝑁}⟩}‘𝑖) = ({⟨𝐴, {𝑁}⟩}‘𝐴))
1817eleq2d 2814 . . . . . 6 (𝑖 = 𝐴 → (𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
1918rexsng 4640 . . . . 5 (𝐴𝑋 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
203, 19syl 17 . . . 4 (𝜑 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
2116, 20bitrd 279 . . 3 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
228, 21mtbird 325 . 2 (𝜑 → ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))
231eldifad 3926 . . . 4 (𝜑𝐾𝑉)
24 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2524eleq2d 2814 . . . 4 (𝜑 → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾𝑉))
2623, 25mpbird 257 . . 3 (𝜑𝐾 ∈ (Vtx‘𝐺))
27 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
28 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
29 eqid 2729 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3027, 28, 29vtxd0nedgb 29416 . . 3 (𝐾 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)))
3126, 30syl 17 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)))
3222, 31mpbird 257 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cdif 3911  {csn 4589  cop 4595  dom cdm 5638  cfv 6511  0cc0 11068  Vtxcvtx 28923  iEdgciedg 28924  VtxDegcvtxdg 29393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-xadd 13073  df-fz 13469  df-hash 14296  df-vtxdg 29394
This theorem is referenced by:  1egrvtxdg0  29439  eupth2lem3lem3  30159
  Copyright terms: Public domain W3C validator