![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1loopgrvd0 | Structured version Visualization version GIF version |
Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
1loopgruspgr.v | β’ (π β (VtxβπΊ) = π) |
1loopgruspgr.a | β’ (π β π΄ β π) |
1loopgruspgr.n | β’ (π β π β π) |
1loopgruspgr.i | β’ (π β (iEdgβπΊ) = {β¨π΄, {π}β©}) |
1loopgrvd0.k | β’ (π β πΎ β (π β {π})) |
Ref | Expression |
---|---|
1loopgrvd0 | β’ (π β ((VtxDegβπΊ)βπΎ) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1loopgrvd0.k | . . . . 5 β’ (π β πΎ β (π β {π})) | |
2 | 1 | eldifbd 3962 | . . . 4 β’ (π β Β¬ πΎ β {π}) |
3 | 1loopgruspgr.a | . . . . . 6 β’ (π β π΄ β π) | |
4 | snex 5432 | . . . . . 6 β’ {π} β V | |
5 | fvsng 7181 | . . . . . 6 β’ ((π΄ β π β§ {π} β V) β ({β¨π΄, {π}β©}βπ΄) = {π}) | |
6 | 3, 4, 5 | sylancl 585 | . . . . 5 β’ (π β ({β¨π΄, {π}β©}βπ΄) = {π}) |
7 | 6 | eleq2d 2818 | . . . 4 β’ (π β (πΎ β ({β¨π΄, {π}β©}βπ΄) β πΎ β {π})) |
8 | 2, 7 | mtbird 324 | . . 3 β’ (π β Β¬ πΎ β ({β¨π΄, {π}β©}βπ΄)) |
9 | 1loopgruspgr.i | . . . . . . 7 β’ (π β (iEdgβπΊ) = {β¨π΄, {π}β©}) | |
10 | 9 | dmeqd 5906 | . . . . . 6 β’ (π β dom (iEdgβπΊ) = dom {β¨π΄, {π}β©}) |
11 | dmsnopg 6213 | . . . . . . 7 β’ ({π} β V β dom {β¨π΄, {π}β©} = {π΄}) | |
12 | 4, 11 | mp1i 13 | . . . . . 6 β’ (π β dom {β¨π΄, {π}β©} = {π΄}) |
13 | 10, 12 | eqtrd 2771 | . . . . 5 β’ (π β dom (iEdgβπΊ) = {π΄}) |
14 | 9 | fveq1d 6894 | . . . . . 6 β’ (π β ((iEdgβπΊ)βπ) = ({β¨π΄, {π}β©}βπ)) |
15 | 14 | eleq2d 2818 | . . . . 5 β’ (π β (πΎ β ((iEdgβπΊ)βπ) β πΎ β ({β¨π΄, {π}β©}βπ))) |
16 | 13, 15 | rexeqbidv 3342 | . . . 4 β’ (π β (βπ β dom (iEdgβπΊ)πΎ β ((iEdgβπΊ)βπ) β βπ β {π΄}πΎ β ({β¨π΄, {π}β©}βπ))) |
17 | fveq2 6892 | . . . . . . 7 β’ (π = π΄ β ({β¨π΄, {π}β©}βπ) = ({β¨π΄, {π}β©}βπ΄)) | |
18 | 17 | eleq2d 2818 | . . . . . 6 β’ (π = π΄ β (πΎ β ({β¨π΄, {π}β©}βπ) β πΎ β ({β¨π΄, {π}β©}βπ΄))) |
19 | 18 | rexsng 4679 | . . . . 5 β’ (π΄ β π β (βπ β {π΄}πΎ β ({β¨π΄, {π}β©}βπ) β πΎ β ({β¨π΄, {π}β©}βπ΄))) |
20 | 3, 19 | syl 17 | . . . 4 β’ (π β (βπ β {π΄}πΎ β ({β¨π΄, {π}β©}βπ) β πΎ β ({β¨π΄, {π}β©}βπ΄))) |
21 | 16, 20 | bitrd 278 | . . 3 β’ (π β (βπ β dom (iEdgβπΊ)πΎ β ((iEdgβπΊ)βπ) β πΎ β ({β¨π΄, {π}β©}βπ΄))) |
22 | 8, 21 | mtbird 324 | . 2 β’ (π β Β¬ βπ β dom (iEdgβπΊ)πΎ β ((iEdgβπΊ)βπ)) |
23 | 1 | eldifad 3961 | . . . 4 β’ (π β πΎ β π) |
24 | 1loopgruspgr.v | . . . . 5 β’ (π β (VtxβπΊ) = π) | |
25 | 24 | eleq2d 2818 | . . . 4 β’ (π β (πΎ β (VtxβπΊ) β πΎ β π)) |
26 | 23, 25 | mpbird 256 | . . 3 β’ (π β πΎ β (VtxβπΊ)) |
27 | eqid 2731 | . . . 4 β’ (VtxβπΊ) = (VtxβπΊ) | |
28 | eqid 2731 | . . . 4 β’ (iEdgβπΊ) = (iEdgβπΊ) | |
29 | eqid 2731 | . . . 4 β’ (VtxDegβπΊ) = (VtxDegβπΊ) | |
30 | 27, 28, 29 | vtxd0nedgb 29009 | . . 3 β’ (πΎ β (VtxβπΊ) β (((VtxDegβπΊ)βπΎ) = 0 β Β¬ βπ β dom (iEdgβπΊ)πΎ β ((iEdgβπΊ)βπ))) |
31 | 26, 30 | syl 17 | . 2 β’ (π β (((VtxDegβπΊ)βπΎ) = 0 β Β¬ βπ β dom (iEdgβπΊ)πΎ β ((iEdgβπΊ)βπ))) |
32 | 22, 31 | mpbird 256 | 1 β’ (π β ((VtxDegβπΊ)βπΎ) = 0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 = wceq 1540 β wcel 2105 βwrex 3069 Vcvv 3473 β cdif 3946 {csn 4629 β¨cop 4635 dom cdm 5677 βcfv 6544 0cc0 11113 Vtxcvtx 28520 iEdgciedg 28521 VtxDegcvtxdg 28986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-xadd 13098 df-fz 13490 df-hash 14296 df-vtxdg 28987 |
This theorem is referenced by: 1egrvtxdg0 29032 eupth2lem3lem3 29747 |
Copyright terms: Public domain | W3C validator |