MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrvd0 Structured version   Visualization version   GIF version

Theorem 1loopgrvd0 27871
Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
1loopgrvd0.k (𝜑𝐾 ∈ (𝑉 ∖ {𝑁}))
Assertion
Ref Expression
1loopgrvd0 (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0)

Proof of Theorem 1loopgrvd0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1loopgrvd0.k . . . . 5 (𝜑𝐾 ∈ (𝑉 ∖ {𝑁}))
21eldifbd 3900 . . . 4 (𝜑 → ¬ 𝐾 ∈ {𝑁})
3 1loopgruspgr.a . . . . . 6 (𝜑𝐴𝑋)
4 snex 5354 . . . . . 6 {𝑁} ∈ V
5 fvsng 7052 . . . . . 6 ((𝐴𝑋 ∧ {𝑁} ∈ V) → ({⟨𝐴, {𝑁}⟩}‘𝐴) = {𝑁})
63, 4, 5sylancl 586 . . . . 5 (𝜑 → ({⟨𝐴, {𝑁}⟩}‘𝐴) = {𝑁})
76eleq2d 2824 . . . 4 (𝜑 → (𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴) ↔ 𝐾 ∈ {𝑁}))
82, 7mtbird 325 . . 3 (𝜑 → ¬ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴))
9 1loopgruspgr.i . . . . . . 7 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
109dmeqd 5814 . . . . . 6 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝑁}⟩})
11 dmsnopg 6116 . . . . . . 7 ({𝑁} ∈ V → dom {⟨𝐴, {𝑁}⟩} = {𝐴})
124, 11mp1i 13 . . . . . 6 (𝜑 → dom {⟨𝐴, {𝑁}⟩} = {𝐴})
1310, 12eqtrd 2778 . . . . 5 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
149fveq1d 6776 . . . . . 6 (𝜑 → ((iEdg‘𝐺)‘𝑖) = ({⟨𝐴, {𝑁}⟩}‘𝑖))
1514eleq2d 2824 . . . . 5 (𝜑 → (𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖)))
1613, 15rexeqbidv 3337 . . . 4 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ ∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖)))
17 fveq2 6774 . . . . . . 7 (𝑖 = 𝐴 → ({⟨𝐴, {𝑁}⟩}‘𝑖) = ({⟨𝐴, {𝑁}⟩}‘𝐴))
1817eleq2d 2824 . . . . . 6 (𝑖 = 𝐴 → (𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
1918rexsng 4610 . . . . 5 (𝐴𝑋 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
203, 19syl 17 . . . 4 (𝜑 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
2116, 20bitrd 278 . . 3 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({⟨𝐴, {𝑁}⟩}‘𝐴)))
228, 21mtbird 325 . 2 (𝜑 → ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))
231eldifad 3899 . . . 4 (𝜑𝐾𝑉)
24 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2524eleq2d 2824 . . . 4 (𝜑 → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾𝑉))
2623, 25mpbird 256 . . 3 (𝜑𝐾 ∈ (Vtx‘𝐺))
27 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
28 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
29 eqid 2738 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3027, 28, 29vtxd0nedgb 27855 . . 3 (𝐾 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)))
3126, 30syl 17 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)))
3222, 31mpbird 256 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cdif 3884  {csn 4561  cop 4567  dom cdm 5589  cfv 6433  0cc0 10871  Vtxcvtx 27366  iEdgciedg 27367  VtxDegcvtxdg 27832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-xadd 12849  df-fz 13240  df-hash 14045  df-vtxdg 27833
This theorem is referenced by:  1egrvtxdg0  27878  eupth2lem3lem3  28594
  Copyright terms: Public domain W3C validator