![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1loopgrvd0 | Structured version Visualization version GIF version |
Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
1loopgrvd0.k | ⊢ (𝜑 → 𝐾 ∈ (𝑉 ∖ {𝑁})) |
Ref | Expression |
---|---|
1loopgrvd0 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1loopgrvd0.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝑉 ∖ {𝑁})) | |
2 | 1 | eldifbd 3989 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∈ {𝑁}) |
3 | 1loopgruspgr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
4 | snex 5451 | . . . . . 6 ⊢ {𝑁} ∈ V | |
5 | fvsng 7214 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ {𝑁} ∈ V) → ({〈𝐴, {𝑁}〉}‘𝐴) = {𝑁}) | |
6 | 3, 4, 5 | sylancl 585 | . . . . 5 ⊢ (𝜑 → ({〈𝐴, {𝑁}〉}‘𝐴) = {𝑁}) |
7 | 6 | eleq2d 2830 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴) ↔ 𝐾 ∈ {𝑁})) |
8 | 2, 7 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴)) |
9 | 1loopgruspgr.i | . . . . . . 7 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
10 | 9 | dmeqd 5930 | . . . . . 6 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝑁}〉}) |
11 | dmsnopg 6244 | . . . . . . 7 ⊢ ({𝑁} ∈ V → dom {〈𝐴, {𝑁}〉} = {𝐴}) | |
12 | 4, 11 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, {𝑁}〉} = {𝐴}) |
13 | 10, 12 | eqtrd 2780 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) |
14 | 9 | fveq1d 6922 | . . . . . 6 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝑖) = ({〈𝐴, {𝑁}〉}‘𝑖)) |
15 | 14 | eleq2d 2830 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖))) |
16 | 13, 15 | rexeqbidv 3355 | . . . 4 ⊢ (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ ∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖))) |
17 | fveq2 6920 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → ({〈𝐴, {𝑁}〉}‘𝑖) = ({〈𝐴, {𝑁}〉}‘𝐴)) | |
18 | 17 | eleq2d 2830 | . . . . . 6 ⊢ (𝑖 = 𝐴 → (𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
19 | 18 | rexsng 4698 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
20 | 3, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
21 | 16, 20 | bitrd 279 | . . 3 ⊢ (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
22 | 8, 21 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)) |
23 | 1 | eldifad 3988 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
24 | 1loopgruspgr.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
25 | 24 | eleq2d 2830 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ 𝑉)) |
26 | 23, 25 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (Vtx‘𝐺)) |
27 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
28 | eqid 2740 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
29 | eqid 2740 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
30 | 27, 28, 29 | vtxd0nedgb 29524 | . . 3 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))) |
31 | 26, 30 | syl 17 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))) |
32 | 22, 31 | mpbird 257 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 {csn 4648 〈cop 4654 dom cdm 5700 ‘cfv 6573 0cc0 11184 Vtxcvtx 29031 iEdgciedg 29032 VtxDegcvtxdg 29501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-xadd 13176 df-fz 13568 df-hash 14380 df-vtxdg 29502 |
This theorem is referenced by: 1egrvtxdg0 29547 eupth2lem3lem3 30262 |
Copyright terms: Public domain | W3C validator |