![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1loopgrvd0 | Structured version Visualization version GIF version |
Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
1loopgrvd0.k | ⊢ (𝜑 → 𝐾 ∈ (𝑉 ∖ {𝑁})) |
Ref | Expression |
---|---|
1loopgrvd0 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1loopgrvd0.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝑉 ∖ {𝑁})) | |
2 | 1 | eldifbd 3811 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∈ {𝑁}) |
3 | 1loopgruspgr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
4 | snex 5131 | . . . . . 6 ⊢ {𝑁} ∈ V | |
5 | fvsng 6703 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ {𝑁} ∈ V) → ({〈𝐴, {𝑁}〉}‘𝐴) = {𝑁}) | |
6 | 3, 4, 5 | sylancl 580 | . . . . 5 ⊢ (𝜑 → ({〈𝐴, {𝑁}〉}‘𝐴) = {𝑁}) |
7 | 6 | eleq2d 2892 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴) ↔ 𝐾 ∈ {𝑁})) |
8 | 2, 7 | mtbird 317 | . . 3 ⊢ (𝜑 → ¬ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴)) |
9 | 1loopgruspgr.i | . . . . . . 7 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
10 | 9 | dmeqd 5562 | . . . . . 6 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝑁}〉}) |
11 | dmsnopg 5851 | . . . . . . 7 ⊢ ({𝑁} ∈ V → dom {〈𝐴, {𝑁}〉} = {𝐴}) | |
12 | 4, 11 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → dom {〈𝐴, {𝑁}〉} = {𝐴}) |
13 | 10, 12 | eqtrd 2861 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) |
14 | 9 | fveq1d 6439 | . . . . . 6 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝑖) = ({〈𝐴, {𝑁}〉}‘𝑖)) |
15 | 14 | eleq2d 2892 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖))) |
16 | 13, 15 | rexeqbidv 3365 | . . . 4 ⊢ (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ ∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖))) |
17 | fveq2 6437 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → ({〈𝐴, {𝑁}〉}‘𝑖) = ({〈𝐴, {𝑁}〉}‘𝐴)) | |
18 | 17 | eleq2d 2892 | . . . . . 6 ⊢ (𝑖 = 𝐴 → (𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
19 | 18 | rexsng 4441 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
20 | 3, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (∃𝑖 ∈ {𝐴}𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
21 | 16, 20 | bitrd 271 | . . 3 ⊢ (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖) ↔ 𝐾 ∈ ({〈𝐴, {𝑁}〉}‘𝐴))) |
22 | 8, 21 | mtbird 317 | . 2 ⊢ (𝜑 → ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖)) |
23 | 1 | eldifad 3810 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
24 | 1loopgruspgr.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
25 | 24 | eleq2d 2892 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ 𝑉)) |
26 | 23, 25 | mpbird 249 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (Vtx‘𝐺)) |
27 | eqid 2825 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
28 | eqid 2825 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
29 | eqid 2825 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
30 | 27, 28, 29 | vtxd0nedgb 26793 | . . 3 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))) |
31 | 26, 30 | syl 17 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝐾) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝐾 ∈ ((iEdg‘𝐺)‘𝑖))) |
32 | 22, 31 | mpbird 249 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐾) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 Vcvv 3414 ∖ cdif 3795 {csn 4399 〈cop 4405 dom cdm 5346 ‘cfv 6127 0cc0 10259 Vtxcvtx 26301 iEdgciedg 26302 VtxDegcvtxdg 26770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-n0 11626 df-xnn0 11698 df-z 11712 df-uz 11976 df-xadd 12240 df-fz 12627 df-hash 13418 df-vtxdg 26771 |
This theorem is referenced by: 1egrvtxdg0 26816 eupth2lem3lem3 27603 |
Copyright terms: Public domain | W3C validator |