Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaclbBAD Structured version   Visualization version   GIF version

Theorem riotaclbBAD 36896
Description: Closure of restricted iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotaclb.1 𝐴 ∈ V
Assertion
Ref Expression
riotaclbBAD (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotaclbBAD
StepHypRef Expression
1 riotaclb.1 . 2 𝐴 ∈ V
2 riotaclbgBAD 36895 . 2 (𝐴 ∈ V → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
31, 2ax-mp 5 1 (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  ∃!wreu 3065  Vcvv 3422  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-undef 8060
This theorem is referenced by:  glbconN  37318  cdlemk36  38854
  Copyright terms: Public domain W3C validator