![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.2 | Structured version Visualization version GIF version |
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
hilbert1.2 | ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 653 | . . . . 5 ⊢ (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) ↔ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)))) | |
2 | simprl 768 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 ∈ LinesEE) | |
3 | simprr 770 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | |
4 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑃 ≠ 𝑄) | |
5 | linethru 35658 | . . . . . . . . 9 ⊢ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ 𝑃 ≠ 𝑄) → 𝑥 = (𝑃Line𝑄)) | |
6 | 2, 3, 4, 5 | syl3anc 1368 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 = (𝑃Line𝑄)) |
7 | 6 | ex 412 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) → 𝑥 = (𝑃Line𝑄))) |
8 | simprl 768 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 ∈ LinesEE) | |
9 | simprr 770 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) | |
10 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ≠ 𝑄) | |
11 | linethru 35658 | . . . . . . . . 9 ⊢ ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦) ∧ 𝑃 ≠ 𝑄) → 𝑦 = (𝑃Line𝑄)) | |
12 | 8, 9, 10, 11 | syl3anc 1368 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 = (𝑃Line𝑄)) |
13 | 12 | ex 412 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑦 = (𝑃Line𝑄))) |
14 | 7, 13 | anim12d 608 | . . . . . 6 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)))) |
15 | eqtr3 2752 | . . . . . 6 ⊢ ((𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)) → 𝑥 = 𝑦) | |
16 | 14, 15 | syl6 35 | . . . . 5 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
17 | 1, 16 | biimtrid 241 | . . . 4 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
18 | 17 | expd 415 | . . 3 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) → (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦))) |
19 | 18 | ralrimivv 3192 | . 2 ⊢ (𝑃 ≠ 𝑄 → ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
20 | eleq2w 2811 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
21 | eleq2w 2811 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ 𝑦)) | |
22 | 20, 21 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) |
23 | 22 | rmo4 3721 | . 2 ⊢ (∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
24 | 19, 23 | sylibr 233 | 1 ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃*wrmo 3369 (class class class)co 7405 Linecline2 35639 LinesEEclines2 35641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-ec 8707 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-sum 15639 df-ee 28657 df-btwn 28658 df-cgr 28659 df-ofs 35488 df-colinear 35544 df-ifs 35545 df-cgr3 35546 df-fs 35547 df-line2 35642 df-lines2 35644 |
This theorem is referenced by: linethrueu 35661 |
Copyright terms: Public domain | W3C validator |