Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.2 | Structured version Visualization version GIF version |
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
hilbert1.2 | ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 656 | . . . . 5 ⊢ (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) ↔ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)))) | |
2 | simprl 771 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 ∈ LinesEE) | |
3 | simprr 773 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | |
4 | simpl 486 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑃 ≠ 𝑄) | |
5 | linethru 34093 | . . . . . . . . 9 ⊢ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ 𝑃 ≠ 𝑄) → 𝑥 = (𝑃Line𝑄)) | |
6 | 2, 3, 4, 5 | syl3anc 1372 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 = (𝑃Line𝑄)) |
7 | 6 | ex 416 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) → 𝑥 = (𝑃Line𝑄))) |
8 | simprl 771 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 ∈ LinesEE) | |
9 | simprr 773 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) | |
10 | simpl 486 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ≠ 𝑄) | |
11 | linethru 34093 | . . . . . . . . 9 ⊢ ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦) ∧ 𝑃 ≠ 𝑄) → 𝑦 = (𝑃Line𝑄)) | |
12 | 8, 9, 10, 11 | syl3anc 1372 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 = (𝑃Line𝑄)) |
13 | 12 | ex 416 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑦 = (𝑃Line𝑄))) |
14 | 7, 13 | anim12d 612 | . . . . . 6 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)))) |
15 | eqtr3 2760 | . . . . . 6 ⊢ ((𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)) → 𝑥 = 𝑦) | |
16 | 14, 15 | syl6 35 | . . . . 5 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
17 | 1, 16 | syl5bi 245 | . . . 4 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
18 | 17 | expd 419 | . . 3 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) → (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦))) |
19 | 18 | ralrimivv 3102 | . 2 ⊢ (𝑃 ≠ 𝑄 → ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
20 | eleq2w 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
21 | eleq2w 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ 𝑦)) | |
22 | 20, 21 | anbi12d 634 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) |
23 | 22 | rmo4 3629 | . 2 ⊢ (∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
24 | 19, 23 | sylibr 237 | 1 ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 ∃*wrmo 3056 (class class class)co 7170 Linecline2 34074 LinesEEclines2 34076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-ec 8322 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-sum 15136 df-ee 26837 df-btwn 26838 df-cgr 26839 df-ofs 33923 df-colinear 33979 df-ifs 33980 df-cgr3 33981 df-fs 33982 df-line2 34077 df-lines2 34079 |
This theorem is referenced by: linethrueu 34096 |
Copyright terms: Public domain | W3C validator |