Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hilbert1.2 Structured version   Visualization version   GIF version

Theorem hilbert1.2 35122
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
hilbert1.2 (𝑃𝑄 → ∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑄

Proof of Theorem hilbert1.2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 an4 654 . . . . 5 (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) ↔ ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))))
2 simprl 769 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑥 ∈ LinesEE)
3 simprr 771 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → (𝑃𝑥𝑄𝑥))
4 simpl 483 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑃𝑄)
5 linethru 35120 . . . . . . . . 9 ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥) ∧ 𝑃𝑄) → 𝑥 = (𝑃Line𝑄))
62, 3, 4, 5syl3anc 1371 . . . . . . . 8 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑥 = (𝑃Line𝑄))
76ex 413 . . . . . . 7 (𝑃𝑄 → ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) → 𝑥 = (𝑃Line𝑄)))
8 simprl 769 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 ∈ LinesEE)
9 simprr 771 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → (𝑃𝑦𝑄𝑦))
10 simpl 483 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑄)
11 linethru 35120 . . . . . . . . 9 ((𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦) ∧ 𝑃𝑄) → 𝑦 = (𝑃Line𝑄))
128, 9, 10, 11syl3anc 1371 . . . . . . . 8 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 = (𝑃Line𝑄))
1312ex 413 . . . . . . 7 (𝑃𝑄 → ((𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦)) → 𝑦 = (𝑃Line𝑄)))
147, 13anim12d 609 . . . . . 6 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → (𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄))))
15 eqtr3 2758 . . . . . 6 ((𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)) → 𝑥 = 𝑦)
1614, 15syl6 35 . . . . 5 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦))
171, 16biimtrid 241 . . . 4 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦))
1817expd 416 . . 3 (𝑃𝑄 → ((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) → (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦)))
1918ralrimivv 3198 . 2 (𝑃𝑄 → ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
20 eleq2w 2817 . . . 4 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
21 eleq2w 2817 . . . 4 (𝑥 = 𝑦 → (𝑄𝑥𝑄𝑦))
2220, 21anbi12d 631 . . 3 (𝑥 = 𝑦 → ((𝑃𝑥𝑄𝑥) ↔ (𝑃𝑦𝑄𝑦)))
2322rmo4 3726 . 2 (∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥) ↔ ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2419, 23sylibr 233 1 (𝑃𝑄 → ∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  ∃*wrmo 3375  (class class class)co 7408  Linecline2 35101  LinesEEclines2 35103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-ec 8704  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-ee 28146  df-btwn 28147  df-cgr 28148  df-ofs 34950  df-colinear 35006  df-ifs 35007  df-cgr3 35008  df-fs 35009  df-line2 35104  df-lines2 35106
This theorem is referenced by:  linethrueu  35123
  Copyright terms: Public domain W3C validator