| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.2 | Structured version Visualization version GIF version | ||
| Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| hilbert1.2 | ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . . . . 5 ⊢ (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) ↔ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)))) | |
| 2 | simprl 770 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 ∈ LinesEE) | |
| 3 | simprr 772 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | |
| 4 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑃 ≠ 𝑄) | |
| 5 | linethru 36186 | . . . . . . . . 9 ⊢ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ 𝑃 ≠ 𝑄) → 𝑥 = (𝑃Line𝑄)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 = (𝑃Line𝑄)) |
| 7 | 6 | ex 412 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) → 𝑥 = (𝑃Line𝑄))) |
| 8 | simprl 770 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 ∈ LinesEE) | |
| 9 | simprr 772 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) | |
| 10 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ≠ 𝑄) | |
| 11 | linethru 36186 | . . . . . . . . 9 ⊢ ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦) ∧ 𝑃 ≠ 𝑄) → 𝑦 = (𝑃Line𝑄)) | |
| 12 | 8, 9, 10, 11 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 = (𝑃Line𝑄)) |
| 13 | 12 | ex 412 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑦 = (𝑃Line𝑄))) |
| 14 | 7, 13 | anim12d 609 | . . . . . 6 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)))) |
| 15 | eqtr3 2753 | . . . . . 6 ⊢ ((𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)) → 𝑥 = 𝑦) | |
| 16 | 14, 15 | syl6 35 | . . . . 5 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
| 17 | 1, 16 | biimtrid 242 | . . . 4 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
| 18 | 17 | expd 415 | . . 3 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) → (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦))) |
| 19 | 18 | ralrimivv 3173 | . 2 ⊢ (𝑃 ≠ 𝑄 → ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
| 20 | eleq2w 2815 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
| 21 | eleq2w 2815 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ 𝑦)) | |
| 22 | 20, 21 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) |
| 23 | 22 | rmo4 3689 | . 2 ⊢ (∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
| 24 | 19, 23 | sylibr 234 | 1 ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃*wrmo 3345 (class class class)co 7346 Linecline2 36167 LinesEEclines2 36169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-ee 28867 df-btwn 28868 df-cgr 28869 df-ofs 36016 df-colinear 36072 df-ifs 36073 df-cgr3 36074 df-fs 36075 df-line2 36170 df-lines2 36172 |
| This theorem is referenced by: linethrueu 36189 |
| Copyright terms: Public domain | W3C validator |