Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hilbert1.2 | Structured version Visualization version GIF version |
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
hilbert1.2 | ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 653 | . . . . 5 ⊢ (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) ↔ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)))) | |
2 | simprl 768 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 ∈ LinesEE) | |
3 | simprr 770 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | |
4 | simpl 483 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑃 ≠ 𝑄) | |
5 | linethru 34455 | . . . . . . . . 9 ⊢ ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ 𝑃 ≠ 𝑄) → 𝑥 = (𝑃Line𝑄)) | |
6 | 2, 3, 4, 5 | syl3anc 1370 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥))) → 𝑥 = (𝑃Line𝑄)) |
7 | 6 | ex 413 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) → 𝑥 = (𝑃Line𝑄))) |
8 | simprl 768 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 ∈ LinesEE) | |
9 | simprr 770 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) | |
10 | simpl 483 | . . . . . . . . 9 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑃 ≠ 𝑄) | |
11 | linethru 34455 | . . . . . . . . 9 ⊢ ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦) ∧ 𝑃 ≠ 𝑄) → 𝑦 = (𝑃Line𝑄)) | |
12 | 8, 9, 10, 11 | syl3anc 1370 | . . . . . . . 8 ⊢ ((𝑃 ≠ 𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑦 = (𝑃Line𝑄)) |
13 | 12 | ex 413 | . . . . . . 7 ⊢ (𝑃 ≠ 𝑄 → ((𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑦 = (𝑃Line𝑄))) |
14 | 7, 13 | anim12d 609 | . . . . . 6 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → (𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)))) |
15 | eqtr3 2764 | . . . . . 6 ⊢ ((𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)) → 𝑥 = 𝑦) | |
16 | 14, 15 | syl6 35 | . . . . 5 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
17 | 1, 16 | syl5bi 241 | . . . 4 ⊢ (𝑃 ≠ 𝑄 → (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) → 𝑥 = 𝑦)) |
18 | 17 | expd 416 | . . 3 ⊢ (𝑃 ≠ 𝑄 → ((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) → (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦))) |
19 | 18 | ralrimivv 3122 | . 2 ⊢ (𝑃 ≠ 𝑄 → ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
20 | eleq2w 2822 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
21 | eleq2w 2822 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ 𝑦)) | |
22 | 20, 21 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦))) |
23 | 22 | rmo4 3665 | . 2 ⊢ (∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ∧ (𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦)) → 𝑥 = 𝑦)) |
24 | 19, 23 | sylibr 233 | 1 ⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃*wrmo 3067 (class class class)co 7275 Linecline2 34436 LinesEEclines2 34438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-ec 8500 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-ee 27259 df-btwn 27260 df-cgr 27261 df-ofs 34285 df-colinear 34341 df-ifs 34342 df-cgr3 34343 df-fs 34344 df-line2 34439 df-lines2 34441 |
This theorem is referenced by: linethrueu 34458 |
Copyright terms: Public domain | W3C validator |