Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hilbert1.2 Structured version   Visualization version   GIF version

Theorem hilbert1.2 36119
Description: There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
hilbert1.2 (𝑃𝑄 → ∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑄

Proof of Theorem hilbert1.2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 an4 655 . . . . 5 (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) ↔ ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))))
2 simprl 770 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑥 ∈ LinesEE)
3 simprr 772 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → (𝑃𝑥𝑄𝑥))
4 simpl 482 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑃𝑄)
5 linethru 36117 . . . . . . . . 9 ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥) ∧ 𝑃𝑄) → 𝑥 = (𝑃Line𝑄))
62, 3, 4, 5syl3anc 1371 . . . . . . . 8 ((𝑃𝑄 ∧ (𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥))) → 𝑥 = (𝑃Line𝑄))
76ex 412 . . . . . . 7 (𝑃𝑄 → ((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) → 𝑥 = (𝑃Line𝑄)))
8 simprl 770 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 ∈ LinesEE)
9 simprr 772 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → (𝑃𝑦𝑄𝑦))
10 simpl 482 . . . . . . . . 9 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑃𝑄)
11 linethru 36117 . . . . . . . . 9 ((𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦) ∧ 𝑃𝑄) → 𝑦 = (𝑃Line𝑄))
128, 9, 10, 11syl3anc 1371 . . . . . . . 8 ((𝑃𝑄 ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑦 = (𝑃Line𝑄))
1312ex 412 . . . . . . 7 (𝑃𝑄 → ((𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦)) → 𝑦 = (𝑃Line𝑄)))
147, 13anim12d 608 . . . . . 6 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → (𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄))))
15 eqtr3 2766 . . . . . 6 ((𝑥 = (𝑃Line𝑄) ∧ 𝑦 = (𝑃Line𝑄)) → 𝑥 = 𝑦)
1614, 15syl6 35 . . . . 5 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ (𝑃𝑥𝑄𝑥)) ∧ (𝑦 ∈ LinesEE ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦))
171, 16biimtrid 242 . . . 4 (𝑃𝑄 → (((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) ∧ ((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦))) → 𝑥 = 𝑦))
1817expd 415 . . 3 (𝑃𝑄 → ((𝑥 ∈ LinesEE ∧ 𝑦 ∈ LinesEE) → (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦)))
1918ralrimivv 3206 . 2 (𝑃𝑄 → ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
20 eleq2w 2828 . . . 4 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
21 eleq2w 2828 . . . 4 (𝑥 = 𝑦 → (𝑄𝑥𝑄𝑦))
2220, 21anbi12d 631 . . 3 (𝑥 = 𝑦 → ((𝑃𝑥𝑄𝑥) ↔ (𝑃𝑦𝑄𝑦)))
2322rmo4 3752 . 2 (∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥) ↔ ∀𝑥 ∈ LinesEE ∀𝑦 ∈ LinesEE (((𝑃𝑥𝑄𝑥) ∧ (𝑃𝑦𝑄𝑦)) → 𝑥 = 𝑦))
2419, 23sylibr 234 1 (𝑃𝑄 → ∃*𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  ∃*wrmo 3387  (class class class)co 7448  Linecline2 36098  LinesEEclines2 36100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-ee 28924  df-btwn 28925  df-cgr 28926  df-ofs 35947  df-colinear 36003  df-ifs 36004  df-cgr3 36005  df-fs 36006  df-line2 36101  df-lines2 36103
This theorem is referenced by:  linethrueu  36120
  Copyright terms: Public domain W3C validator