MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsmo Structured version   Visualization version   GIF version

Theorem divsmo 28127
Description: Uniqueness of surreal inversion. Given a non-zero surreal 𝐴, there is at most one surreal giving a particular product. (Contributed by Scott Fenton, 10-Mar-2025.)
Assertion
Ref Expression
divsmo ((𝐴 No 𝐴 ≠ 0s ) → ∃*𝑥 No (𝐴 ·s 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem divsmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2757 . . . 4 (((𝐴 ·s 𝑥) = 𝐵 ∧ (𝐴 ·s 𝑦) = 𝐵) → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑦))
2 simprl 770 . . . . 5 (((𝐴 No 𝐴 ≠ 0s ) ∧ (𝑥 No 𝑦 No )) → 𝑥 No )
3 simprr 772 . . . . 5 (((𝐴 No 𝐴 ≠ 0s ) ∧ (𝑥 No 𝑦 No )) → 𝑦 No )
4 simpll 766 . . . . 5 (((𝐴 No 𝐴 ≠ 0s ) ∧ (𝑥 No 𝑦 No )) → 𝐴 No )
5 simplr 768 . . . . 5 (((𝐴 No 𝐴 ≠ 0s ) ∧ (𝑥 No 𝑦 No )) → 𝐴 ≠ 0s )
62, 3, 4, 5mulscan1d 28123 . . . 4 (((𝐴 No 𝐴 ≠ 0s ) ∧ (𝑥 No 𝑦 No )) → ((𝐴 ·s 𝑥) = (𝐴 ·s 𝑦) ↔ 𝑥 = 𝑦))
71, 6imbitrid 244 . . 3 (((𝐴 No 𝐴 ≠ 0s ) ∧ (𝑥 No 𝑦 No )) → (((𝐴 ·s 𝑥) = 𝐵 ∧ (𝐴 ·s 𝑦) = 𝐵) → 𝑥 = 𝑦))
87ralrimivva 3187 . 2 ((𝐴 No 𝐴 ≠ 0s ) → ∀𝑥 No 𝑦 No (((𝐴 ·s 𝑥) = 𝐵 ∧ (𝐴 ·s 𝑦) = 𝐵) → 𝑥 = 𝑦))
9 oveq2 7411 . . . 4 (𝑥 = 𝑦 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑦))
109eqeq1d 2737 . . 3 (𝑥 = 𝑦 → ((𝐴 ·s 𝑥) = 𝐵 ↔ (𝐴 ·s 𝑦) = 𝐵))
1110rmo4 3713 . 2 (∃*𝑥 No (𝐴 ·s 𝑥) = 𝐵 ↔ ∀𝑥 No 𝑦 No (((𝐴 ·s 𝑥) = 𝐵 ∧ (𝐴 ·s 𝑦) = 𝐵) → 𝑥 = 𝑦))
128, 11sylibr 234 1 ((𝐴 No 𝐴 ≠ 0s ) → ∃*𝑥 No (𝐴 ·s 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  ∃*wrmo 3358  (class class class)co 7403   No csur 27601   0s c0s 27784   ·s cmuls 28049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-1o 8478  df-2o 8479  df-nadd 8676  df-no 27604  df-slt 27605  df-bday 27606  df-sle 27707  df-sslt 27743  df-scut 27745  df-0s 27786  df-made 27803  df-old 27804  df-left 27806  df-right 27807  df-norec 27888  df-norec2 27899  df-adds 27910  df-negs 27970  df-subs 27971  df-muls 28050
This theorem is referenced by:  noreceuw  28134
  Copyright terms: Public domain W3C validator