| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsmo | Structured version Visualization version GIF version | ||
| Description: Uniqueness of surreal inversion. Given a non-zero surreal 𝐴, there is at most one surreal giving a particular product. (Contributed by Scott Fenton, 10-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsmo | ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃*𝑥 ∈ No (𝐴 ·s 𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2763 | . . . 4 ⊢ (((𝐴 ·s 𝑥) = 𝐵 ∧ (𝐴 ·s 𝑦) = 𝐵) → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑦)) | |
| 2 | simprl 771 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ (𝑥 ∈ No ∧ 𝑦 ∈ No )) → 𝑥 ∈ No ) | |
| 3 | simprr 773 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ (𝑥 ∈ No ∧ 𝑦 ∈ No )) → 𝑦 ∈ No ) | |
| 4 | simpll 767 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ (𝑥 ∈ No ∧ 𝑦 ∈ No )) → 𝐴 ∈ No ) | |
| 5 | simplr 769 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ (𝑥 ∈ No ∧ 𝑦 ∈ No )) → 𝐴 ≠ 0s ) | |
| 6 | 2, 3, 4, 5 | mulscan1d 28206 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ (𝑥 ∈ No ∧ 𝑦 ∈ No )) → ((𝐴 ·s 𝑥) = (𝐴 ·s 𝑦) ↔ 𝑥 = 𝑦)) |
| 7 | 1, 6 | imbitrid 244 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ (𝑥 ∈ No ∧ 𝑦 ∈ No )) → (((𝐴 ·s 𝑥) = 𝐵 ∧ (𝐴 ·s 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 8 | 7 | ralrimivva 3202 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∀𝑥 ∈ No ∀𝑦 ∈ No (((𝐴 ·s 𝑥) = 𝐵 ∧ (𝐴 ·s 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 9 | oveq2 7439 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑦)) | |
| 10 | 9 | eqeq1d 2739 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ·s 𝑥) = 𝐵 ↔ (𝐴 ·s 𝑦) = 𝐵)) |
| 11 | 10 | rmo4 3736 | . 2 ⊢ (∃*𝑥 ∈ No (𝐴 ·s 𝑥) = 𝐵 ↔ ∀𝑥 ∈ No ∀𝑦 ∈ No (((𝐴 ·s 𝑥) = 𝐵 ∧ (𝐴 ·s 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 12 | 8, 11 | sylibr 234 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃*𝑥 ∈ No (𝐴 ·s 𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃*wrmo 3379 (class class class)co 7431 No csur 27684 0s c0s 27867 ·s cmuls 28132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-1o 8506 df-2o 8507 df-nadd 8704 df-no 27687 df-slt 27688 df-bday 27689 df-sle 27790 df-sslt 27826 df-scut 27828 df-0s 27869 df-made 27886 df-old 27887 df-left 27889 df-right 27890 df-norec 27971 df-norec2 27982 df-adds 27993 df-negs 28053 df-subs 28054 df-muls 28133 |
| This theorem is referenced by: noreceuw 28217 |
| Copyright terms: Public domain | W3C validator |