MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foot Structured version   Visualization version   GIF version

Theorem foot 26516
Description: From a point 𝐶 outside of a line 𝐴, there exists a unique point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. That point is called the foot from 𝐶 on 𝐴. Theorem 8.18 of [Schwabhauser] p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
foot (𝜑 → ∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝜑,𝑥   𝑥,𝐶   𝑥,𝐼   𝑥,   𝑥,𝐿   𝑥,𝑃

Proof of Theorem foot
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . 3 𝑃 = (Base‘𝐺)
2 isperp.d . . 3 = (dist‘𝐺)
3 isperp.i . . 3 𝐼 = (Itv‘𝐺)
4 isperp.l . . 3 𝐿 = (LineG‘𝐺)
5 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
7 foot.x . . 3 (𝜑𝐶𝑃)
8 foot.y . . 3 (𝜑 → ¬ 𝐶𝐴)
91, 2, 3, 4, 5, 6, 7, 8footex 26515 . 2 (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
10 eqid 2798 . . . . . 6 (pInvG‘𝐺) = (pInvG‘𝐺)
115ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐺 ∈ TarskiG)
127ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑃)
135adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐺 ∈ TarskiG)
146adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐴 ∈ ran 𝐿)
15 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝐴)
161, 4, 3, 13, 14, 15tglnpt 26343 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝑃)
1716adantr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥𝑃)
18 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝐴)
191, 4, 3, 13, 14, 18tglnpt 26343 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝑃)
2019adantr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧𝑃)
218adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ¬ 𝐶𝐴)
22 nelne2 3084 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ¬ 𝐶𝐴) → 𝑥𝐶)
2315, 21, 22syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝐶)
2423necomd 3042 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑥)
2524adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑥)
261, 3, 4, 11, 12, 17, 25tglinerflx1 26427 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑥))
2718adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧𝐴)
28 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
297adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑃)
301, 3, 4, 13, 29, 16, 24tgelrnln 26424 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (𝐶𝐿𝑥) ∈ ran 𝐿)
311, 3, 4, 13, 29, 16, 24tglinerflx2 26428 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥 ∈ (𝐶𝐿𝑥))
3231, 15elind 4121 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥 ∈ ((𝐶𝐿𝑥) ∩ 𝐴))
331, 2, 3, 4, 13, 30, 14, 32isperp2 26509 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3433adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3528, 34mpbid 235 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
36 id 22 . . . . . . . . . 10 (𝑢 = 𝐶𝑢 = 𝐶)
37 eqidd 2799 . . . . . . . . . 10 (𝑢 = 𝐶𝑥 = 𝑥)
38 eqidd 2799 . . . . . . . . . 10 (𝑢 = 𝐶𝑣 = 𝑣)
3936, 37, 38s3eqd 14217 . . . . . . . . 9 (𝑢 = 𝐶 → ⟨“𝑢𝑥𝑣”⟩ = ⟨“𝐶𝑥𝑣”⟩)
4039eleq1d 2874 . . . . . . . 8 (𝑢 = 𝐶 → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
41 eqidd 2799 . . . . . . . . . 10 (𝑣 = 𝑧𝐶 = 𝐶)
42 eqidd 2799 . . . . . . . . . 10 (𝑣 = 𝑧𝑥 = 𝑥)
43 id 22 . . . . . . . . . 10 (𝑣 = 𝑧𝑣 = 𝑧)
4441, 42, 43s3eqd 14217 . . . . . . . . 9 (𝑣 = 𝑧 → ⟨“𝐶𝑥𝑣”⟩ = ⟨“𝐶𝑥𝑧”⟩)
4544eleq1d 2874 . . . . . . . 8 (𝑣 = 𝑧 → (⟨“𝐶𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
4640, 45rspc2va 3582 . . . . . . 7 (((𝐶 ∈ (𝐶𝐿𝑥) ∧ 𝑧𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺))
4726, 27, 35, 46syl21anc 836 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺))
48 nelne2 3084 . . . . . . . . . . 11 ((𝑧𝐴 ∧ ¬ 𝐶𝐴) → 𝑧𝐶)
4918, 21, 48syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝐶)
5049necomd 3042 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑧)
5150adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑧)
521, 3, 4, 11, 12, 20, 51tglinerflx1 26427 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑧))
5315adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥𝐴)
54 simprr 772 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)
551, 3, 4, 13, 29, 19, 50tgelrnln 26424 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (𝐶𝐿𝑧) ∈ ran 𝐿)
561, 3, 4, 13, 29, 19, 50tglinerflx2 26428 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧 ∈ (𝐶𝐿𝑧))
5756, 18elind 4121 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧 ∈ ((𝐶𝐿𝑧) ∩ 𝐴))
581, 2, 3, 4, 13, 55, 14, 57isperp2 26509 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
5958adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
6054, 59mpbid 235 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺))
61 eqidd 2799 . . . . . . . . . 10 (𝑢 = 𝐶𝑧 = 𝑧)
6236, 61, 38s3eqd 14217 . . . . . . . . 9 (𝑢 = 𝐶 → ⟨“𝑢𝑧𝑣”⟩ = ⟨“𝐶𝑧𝑣”⟩)
6362eleq1d 2874 . . . . . . . 8 (𝑢 = 𝐶 → (⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
64 eqidd 2799 . . . . . . . . . 10 (𝑣 = 𝑥𝐶 = 𝐶)
65 eqidd 2799 . . . . . . . . . 10 (𝑣 = 𝑥𝑧 = 𝑧)
66 id 22 . . . . . . . . . 10 (𝑣 = 𝑥𝑣 = 𝑥)
6764, 65, 66s3eqd 14217 . . . . . . . . 9 (𝑣 = 𝑥 → ⟨“𝐶𝑧𝑣”⟩ = ⟨“𝐶𝑧𝑥”⟩)
6867eleq1d 2874 . . . . . . . 8 (𝑣 = 𝑥 → (⟨“𝐶𝑧𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺)))
6963, 68rspc2va 3582 . . . . . . 7 (((𝐶 ∈ (𝐶𝐿𝑧) ∧ 𝑥𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺))
7052, 53, 60, 69syl21anc 836 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺))
711, 2, 3, 4, 10, 11, 12, 17, 20, 47, 70ragflat 26498 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 = 𝑧)
7271ex 416 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
7372ralrimivva 3156 . . 3 (𝜑 → ∀𝑥𝐴𝑧𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
74 oveq2 7143 . . . . 5 (𝑥 = 𝑧 → (𝐶𝐿𝑥) = (𝐶𝐿𝑧))
7574breq1d 5040 . . . 4 (𝑥 = 𝑧 → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴))
7675rmo4 3669 . . 3 (∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑥𝐴𝑧𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
7773, 76sylibr 237 . 2 (𝜑 → ∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
78 reu5 3375 . 2 (∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ ∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴))
799, 77, 78sylanbrc 586 1 (𝜑 → ∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  ∃!wreu 3108  ∃*wrmo 3109   class class class wbr 5030  ran crn 5520  cfv 6324  (class class class)co 7135  ⟨“cs3 14195  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  pInvGcmir 26446  ∟Gcrag 26487  ⟂Gcperpg 26489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-leg 26377  df-mir 26447  df-rag 26488  df-perpg 26490
This theorem is referenced by:  footeq  26518  mideulem2  26528  lmieu  26578
  Copyright terms: Public domain W3C validator