| Step | Hyp | Ref
| Expression |
| 1 | | isperp.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | isperp.d |
. . 3
⊢ − =
(dist‘𝐺) |
| 3 | | isperp.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
| 4 | | isperp.l |
. . 3
⊢ 𝐿 = (LineG‘𝐺) |
| 5 | | isperp.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 6 | | isperp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| 7 | | foot.x |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 8 | | foot.y |
. . 3
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | footex 28700 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) |
| 10 | | eqid 2735 |
. . . . . 6
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
| 11 | 5 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐺 ∈ TarskiG) |
| 12 | 7 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ 𝑃) |
| 13 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐺 ∈ TarskiG) |
| 14 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐴 ∈ ran 𝐿) |
| 15 | | simprl 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
| 16 | 1, 4, 3, 13, 14, 15 | tglnpt 28528 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ 𝑃) |
| 17 | 16 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 ∈ 𝑃) |
| 18 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝐴) |
| 19 | 1, 4, 3, 13, 14, 18 | tglnpt 28528 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝑃) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧 ∈ 𝑃) |
| 21 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ¬ 𝐶 ∈ 𝐴) |
| 22 | | nelne2 3030 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) → 𝑥 ≠ 𝐶) |
| 23 | 15, 21, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ≠ 𝐶) |
| 24 | 23 | necomd 2987 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐶 ≠ 𝑥) |
| 25 | 24 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ≠ 𝑥) |
| 26 | 1, 3, 4, 11, 12, 17, 25 | tglinerflx1 28612 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑥)) |
| 27 | 18 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧 ∈ 𝐴) |
| 28 | | simprl 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) |
| 29 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐶 ∈ 𝑃) |
| 30 | 1, 3, 4, 13, 29, 16, 24 | tgelrnln 28609 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐶𝐿𝑥) ∈ ran 𝐿) |
| 31 | 1, 3, 4, 13, 29, 16, 24 | tglinerflx2 28613 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ (𝐶𝐿𝑥)) |
| 32 | 31, 15 | elind 4175 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ ((𝐶𝐿𝑥) ∩ 𝐴)) |
| 33 | 1, 2, 3, 4, 13, 30, 14, 32 | isperp2 28694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣 ∈ 𝐴 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 34 | 33 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣 ∈ 𝐴 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 35 | 28, 34 | mpbid 232 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣 ∈ 𝐴 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 36 | | id 22 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐶 → 𝑢 = 𝐶) |
| 37 | | eqidd 2736 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐶 → 𝑥 = 𝑥) |
| 38 | | eqidd 2736 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐶 → 𝑣 = 𝑣) |
| 39 | 36, 37, 38 | s3eqd 14883 |
. . . . . . . . 9
⊢ (𝑢 = 𝐶 → 〈“𝑢𝑥𝑣”〉 = 〈“𝐶𝑥𝑣”〉) |
| 40 | 39 | eleq1d 2819 |
. . . . . . . 8
⊢ (𝑢 = 𝐶 → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐶𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 41 | | eqidd 2736 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑧 → 𝐶 = 𝐶) |
| 42 | | eqidd 2736 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑧 → 𝑥 = 𝑥) |
| 43 | | id 22 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑧 → 𝑣 = 𝑧) |
| 44 | 41, 42, 43 | s3eqd 14883 |
. . . . . . . . 9
⊢ (𝑣 = 𝑧 → 〈“𝐶𝑥𝑣”〉 = 〈“𝐶𝑥𝑧”〉) |
| 45 | 44 | eleq1d 2819 |
. . . . . . . 8
⊢ (𝑣 = 𝑧 → (〈“𝐶𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐶𝑥𝑧”〉 ∈ (∟G‘𝐺))) |
| 46 | 40, 45 | rspc2va 3613 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝐶𝐿𝑥) ∧ 𝑧 ∈ 𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣 ∈ 𝐴 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) → 〈“𝐶𝑥𝑧”〉 ∈ (∟G‘𝐺)) |
| 47 | 26, 27, 35, 46 | syl21anc 837 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 〈“𝐶𝑥𝑧”〉 ∈ (∟G‘𝐺)) |
| 48 | | nelne2 3030 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) → 𝑧 ≠ 𝐶) |
| 49 | 18, 21, 48 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ≠ 𝐶) |
| 50 | 49 | necomd 2987 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐶 ≠ 𝑧) |
| 51 | 50 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ≠ 𝑧) |
| 52 | 1, 3, 4, 11, 12, 20, 51 | tglinerflx1 28612 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑧)) |
| 53 | 15 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 ∈ 𝐴) |
| 54 | | simprr 772 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) |
| 55 | 1, 3, 4, 13, 29, 19, 50 | tgelrnln 28609 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐶𝐿𝑧) ∈ ran 𝐿) |
| 56 | 1, 3, 4, 13, 29, 19, 50 | tglinerflx2 28613 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ (𝐶𝐿𝑧)) |
| 57 | 56, 18 | elind 4175 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ ((𝐶𝐿𝑧) ∩ 𝐴)) |
| 58 | 1, 2, 3, 4, 13, 55, 14, 57 | isperp2 28694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣 ∈ 𝐴 〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺))) |
| 59 | 58 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣 ∈ 𝐴 〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺))) |
| 60 | 54, 59 | mpbid 232 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣 ∈ 𝐴 〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺)) |
| 61 | | eqidd 2736 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐶 → 𝑧 = 𝑧) |
| 62 | 36, 61, 38 | s3eqd 14883 |
. . . . . . . . 9
⊢ (𝑢 = 𝐶 → 〈“𝑢𝑧𝑣”〉 = 〈“𝐶𝑧𝑣”〉) |
| 63 | 62 | eleq1d 2819 |
. . . . . . . 8
⊢ (𝑢 = 𝐶 → (〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐶𝑧𝑣”〉 ∈ (∟G‘𝐺))) |
| 64 | | eqidd 2736 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → 𝐶 = 𝐶) |
| 65 | | eqidd 2736 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → 𝑧 = 𝑧) |
| 66 | | id 22 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → 𝑣 = 𝑥) |
| 67 | 64, 65, 66 | s3eqd 14883 |
. . . . . . . . 9
⊢ (𝑣 = 𝑥 → 〈“𝐶𝑧𝑣”〉 = 〈“𝐶𝑧𝑥”〉) |
| 68 | 67 | eleq1d 2819 |
. . . . . . . 8
⊢ (𝑣 = 𝑥 → (〈“𝐶𝑧𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐶𝑧𝑥”〉 ∈ (∟G‘𝐺))) |
| 69 | 63, 68 | rspc2va 3613 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝐶𝐿𝑧) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣 ∈ 𝐴 〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺)) → 〈“𝐶𝑧𝑥”〉 ∈ (∟G‘𝐺)) |
| 70 | 52, 53, 60, 69 | syl21anc 837 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 〈“𝐶𝑧𝑥”〉 ∈ (∟G‘𝐺)) |
| 71 | 1, 2, 3, 4, 10, 11, 12, 17, 20, 47, 70 | ragflat 28683 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 = 𝑧) |
| 72 | 71 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧)) |
| 73 | 72 | ralrimivva 3187 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧)) |
| 74 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝐶𝐿𝑥) = (𝐶𝐿𝑧)) |
| 75 | 74 | breq1d 5129 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) |
| 76 | 75 | rmo4 3713 |
. . 3
⊢
(∃*𝑥 ∈
𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧)) |
| 77 | 73, 76 | sylibr 234 |
. 2
⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) |
| 78 | | reu5 3361 |
. 2
⊢
(∃!𝑥 ∈
𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (∃𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ ∃*𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)) |
| 79 | 9, 77, 78 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) |