Step | Hyp | Ref
| Expression |
1 | | isperp.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | isperp.d |
. . 3
⊢ − =
(dist‘𝐺) |
3 | | isperp.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
4 | | isperp.l |
. . 3
⊢ 𝐿 = (LineG‘𝐺) |
5 | | isperp.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
6 | | isperp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
7 | | foot.x |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
8 | | foot.y |
. . 3
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | footex 27082 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) |
10 | | eqid 2738 |
. . . . . 6
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
11 | 5 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐺 ∈ TarskiG) |
12 | 7 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ 𝑃) |
13 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐺 ∈ TarskiG) |
14 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐴 ∈ ran 𝐿) |
15 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
16 | 1, 4, 3, 13, 14, 15 | tglnpt 26910 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ 𝑃) |
17 | 16 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 ∈ 𝑃) |
18 | | simprr 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝐴) |
19 | 1, 4, 3, 13, 14, 18 | tglnpt 26910 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝑃) |
20 | 19 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧 ∈ 𝑃) |
21 | 8 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ¬ 𝐶 ∈ 𝐴) |
22 | | nelne2 3042 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) → 𝑥 ≠ 𝐶) |
23 | 15, 21, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ≠ 𝐶) |
24 | 23 | necomd 2999 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐶 ≠ 𝑥) |
25 | 24 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ≠ 𝑥) |
26 | 1, 3, 4, 11, 12, 17, 25 | tglinerflx1 26994 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑥)) |
27 | 18 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧 ∈ 𝐴) |
28 | | simprl 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) |
29 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐶 ∈ 𝑃) |
30 | 1, 3, 4, 13, 29, 16, 24 | tgelrnln 26991 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐶𝐿𝑥) ∈ ran 𝐿) |
31 | 1, 3, 4, 13, 29, 16, 24 | tglinerflx2 26995 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ (𝐶𝐿𝑥)) |
32 | 31, 15 | elind 4128 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ ((𝐶𝐿𝑥) ∩ 𝐴)) |
33 | 1, 2, 3, 4, 13, 30, 14, 32 | isperp2 27076 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣 ∈ 𝐴 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
34 | 33 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣 ∈ 𝐴 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
35 | 28, 34 | mpbid 231 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣 ∈ 𝐴 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
36 | | id 22 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐶 → 𝑢 = 𝐶) |
37 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐶 → 𝑥 = 𝑥) |
38 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐶 → 𝑣 = 𝑣) |
39 | 36, 37, 38 | s3eqd 14577 |
. . . . . . . . 9
⊢ (𝑢 = 𝐶 → 〈“𝑢𝑥𝑣”〉 = 〈“𝐶𝑥𝑣”〉) |
40 | 39 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑢 = 𝐶 → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐶𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
41 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑧 → 𝐶 = 𝐶) |
42 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑧 → 𝑥 = 𝑥) |
43 | | id 22 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑧 → 𝑣 = 𝑧) |
44 | 41, 42, 43 | s3eqd 14577 |
. . . . . . . . 9
⊢ (𝑣 = 𝑧 → 〈“𝐶𝑥𝑣”〉 = 〈“𝐶𝑥𝑧”〉) |
45 | 44 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑣 = 𝑧 → (〈“𝐶𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐶𝑥𝑧”〉 ∈ (∟G‘𝐺))) |
46 | 40, 45 | rspc2va 3571 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝐶𝐿𝑥) ∧ 𝑧 ∈ 𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣 ∈ 𝐴 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) → 〈“𝐶𝑥𝑧”〉 ∈ (∟G‘𝐺)) |
47 | 26, 27, 35, 46 | syl21anc 835 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 〈“𝐶𝑥𝑧”〉 ∈ (∟G‘𝐺)) |
48 | | nelne2 3042 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) → 𝑧 ≠ 𝐶) |
49 | 18, 21, 48 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ≠ 𝐶) |
50 | 49 | necomd 2999 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐶 ≠ 𝑧) |
51 | 50 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ≠ 𝑧) |
52 | 1, 3, 4, 11, 12, 20, 51 | tglinerflx1 26994 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑧)) |
53 | 15 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 ∈ 𝐴) |
54 | | simprr 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) |
55 | 1, 3, 4, 13, 29, 19, 50 | tgelrnln 26991 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐶𝐿𝑧) ∈ ran 𝐿) |
56 | 1, 3, 4, 13, 29, 19, 50 | tglinerflx2 26995 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ (𝐶𝐿𝑧)) |
57 | 56, 18 | elind 4128 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ ((𝐶𝐿𝑧) ∩ 𝐴)) |
58 | 1, 2, 3, 4, 13, 55, 14, 57 | isperp2 27076 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣 ∈ 𝐴 〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺))) |
59 | 58 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣 ∈ 𝐴 〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺))) |
60 | 54, 59 | mpbid 231 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣 ∈ 𝐴 〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺)) |
61 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑢 = 𝐶 → 𝑧 = 𝑧) |
62 | 36, 61, 38 | s3eqd 14577 |
. . . . . . . . 9
⊢ (𝑢 = 𝐶 → 〈“𝑢𝑧𝑣”〉 = 〈“𝐶𝑧𝑣”〉) |
63 | 62 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑢 = 𝐶 → (〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐶𝑧𝑣”〉 ∈ (∟G‘𝐺))) |
64 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → 𝐶 = 𝐶) |
65 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → 𝑧 = 𝑧) |
66 | | id 22 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → 𝑣 = 𝑥) |
67 | 64, 65, 66 | s3eqd 14577 |
. . . . . . . . 9
⊢ (𝑣 = 𝑥 → 〈“𝐶𝑧𝑣”〉 = 〈“𝐶𝑧𝑥”〉) |
68 | 67 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑣 = 𝑥 → (〈“𝐶𝑧𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐶𝑧𝑥”〉 ∈ (∟G‘𝐺))) |
69 | 63, 68 | rspc2va 3571 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝐶𝐿𝑧) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣 ∈ 𝐴 〈“𝑢𝑧𝑣”〉 ∈ (∟G‘𝐺)) → 〈“𝐶𝑧𝑥”〉 ∈ (∟G‘𝐺)) |
70 | 52, 53, 60, 69 | syl21anc 835 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 〈“𝐶𝑧𝑥”〉 ∈ (∟G‘𝐺)) |
71 | 1, 2, 3, 4, 10, 11, 12, 17, 20, 47, 70 | ragflat 27065 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 = 𝑧) |
72 | 71 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧)) |
73 | 72 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧)) |
74 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝐶𝐿𝑥) = (𝐶𝐿𝑧)) |
75 | 74 | breq1d 5084 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) |
76 | 75 | rmo4 3665 |
. . 3
⊢
(∃*𝑥 ∈
𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧)) |
77 | 73, 76 | sylibr 233 |
. 2
⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) |
78 | | reu5 3361 |
. 2
⊢
(∃!𝑥 ∈
𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (∃𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ ∃*𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)) |
79 | 9, 77, 78 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) |