MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foot Structured version   Visualization version   GIF version

Theorem foot 26987
Description: From a point 𝐶 outside of a line 𝐴, there exists a unique point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. That point is called the foot from 𝐶 on 𝐴. Theorem 8.18 of [Schwabhauser] p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
foot (𝜑 → ∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝜑,𝑥   𝑥,𝐶   𝑥,𝐼   𝑥,   𝑥,𝐿   𝑥,𝑃

Proof of Theorem foot
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . 3 𝑃 = (Base‘𝐺)
2 isperp.d . . 3 = (dist‘𝐺)
3 isperp.i . . 3 𝐼 = (Itv‘𝐺)
4 isperp.l . . 3 𝐿 = (LineG‘𝐺)
5 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
7 foot.x . . 3 (𝜑𝐶𝑃)
8 foot.y . . 3 (𝜑 → ¬ 𝐶𝐴)
91, 2, 3, 4, 5, 6, 7, 8footex 26986 . 2 (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
10 eqid 2738 . . . . . 6 (pInvG‘𝐺) = (pInvG‘𝐺)
115ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐺 ∈ TarskiG)
127ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑃)
135adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐺 ∈ TarskiG)
146adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐴 ∈ ran 𝐿)
15 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝐴)
161, 4, 3, 13, 14, 15tglnpt 26814 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝑃)
1716adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥𝑃)
18 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝐴)
191, 4, 3, 13, 14, 18tglnpt 26814 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝑃)
2019adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧𝑃)
218adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ¬ 𝐶𝐴)
22 nelne2 3041 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ¬ 𝐶𝐴) → 𝑥𝐶)
2315, 21, 22syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝐶)
2423necomd 2998 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑥)
2524adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑥)
261, 3, 4, 11, 12, 17, 25tglinerflx1 26898 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑥))
2718adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧𝐴)
28 simprl 767 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
297adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑃)
301, 3, 4, 13, 29, 16, 24tgelrnln 26895 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (𝐶𝐿𝑥) ∈ ran 𝐿)
311, 3, 4, 13, 29, 16, 24tglinerflx2 26899 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥 ∈ (𝐶𝐿𝑥))
3231, 15elind 4124 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥 ∈ ((𝐶𝐿𝑥) ∩ 𝐴))
331, 2, 3, 4, 13, 30, 14, 32isperp2 26980 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3433adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3528, 34mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
36 id 22 . . . . . . . . . 10 (𝑢 = 𝐶𝑢 = 𝐶)
37 eqidd 2739 . . . . . . . . . 10 (𝑢 = 𝐶𝑥 = 𝑥)
38 eqidd 2739 . . . . . . . . . 10 (𝑢 = 𝐶𝑣 = 𝑣)
3936, 37, 38s3eqd 14505 . . . . . . . . 9 (𝑢 = 𝐶 → ⟨“𝑢𝑥𝑣”⟩ = ⟨“𝐶𝑥𝑣”⟩)
4039eleq1d 2823 . . . . . . . 8 (𝑢 = 𝐶 → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
41 eqidd 2739 . . . . . . . . . 10 (𝑣 = 𝑧𝐶 = 𝐶)
42 eqidd 2739 . . . . . . . . . 10 (𝑣 = 𝑧𝑥 = 𝑥)
43 id 22 . . . . . . . . . 10 (𝑣 = 𝑧𝑣 = 𝑧)
4441, 42, 43s3eqd 14505 . . . . . . . . 9 (𝑣 = 𝑧 → ⟨“𝐶𝑥𝑣”⟩ = ⟨“𝐶𝑥𝑧”⟩)
4544eleq1d 2823 . . . . . . . 8 (𝑣 = 𝑧 → (⟨“𝐶𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
4640, 45rspc2va 3563 . . . . . . 7 (((𝐶 ∈ (𝐶𝐿𝑥) ∧ 𝑧𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺))
4726, 27, 35, 46syl21anc 834 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺))
48 nelne2 3041 . . . . . . . . . . 11 ((𝑧𝐴 ∧ ¬ 𝐶𝐴) → 𝑧𝐶)
4918, 21, 48syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝐶)
5049necomd 2998 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑧)
5150adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑧)
521, 3, 4, 11, 12, 20, 51tglinerflx1 26898 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑧))
5315adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥𝐴)
54 simprr 769 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)
551, 3, 4, 13, 29, 19, 50tgelrnln 26895 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (𝐶𝐿𝑧) ∈ ran 𝐿)
561, 3, 4, 13, 29, 19, 50tglinerflx2 26899 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧 ∈ (𝐶𝐿𝑧))
5756, 18elind 4124 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧 ∈ ((𝐶𝐿𝑧) ∩ 𝐴))
581, 2, 3, 4, 13, 55, 14, 57isperp2 26980 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
5958adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
6054, 59mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺))
61 eqidd 2739 . . . . . . . . . 10 (𝑢 = 𝐶𝑧 = 𝑧)
6236, 61, 38s3eqd 14505 . . . . . . . . 9 (𝑢 = 𝐶 → ⟨“𝑢𝑧𝑣”⟩ = ⟨“𝐶𝑧𝑣”⟩)
6362eleq1d 2823 . . . . . . . 8 (𝑢 = 𝐶 → (⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
64 eqidd 2739 . . . . . . . . . 10 (𝑣 = 𝑥𝐶 = 𝐶)
65 eqidd 2739 . . . . . . . . . 10 (𝑣 = 𝑥𝑧 = 𝑧)
66 id 22 . . . . . . . . . 10 (𝑣 = 𝑥𝑣 = 𝑥)
6764, 65, 66s3eqd 14505 . . . . . . . . 9 (𝑣 = 𝑥 → ⟨“𝐶𝑧𝑣”⟩ = ⟨“𝐶𝑧𝑥”⟩)
6867eleq1d 2823 . . . . . . . 8 (𝑣 = 𝑥 → (⟨“𝐶𝑧𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺)))
6963, 68rspc2va 3563 . . . . . . 7 (((𝐶 ∈ (𝐶𝐿𝑧) ∧ 𝑥𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺))
7052, 53, 60, 69syl21anc 834 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺))
711, 2, 3, 4, 10, 11, 12, 17, 20, 47, 70ragflat 26969 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 = 𝑧)
7271ex 412 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
7372ralrimivva 3114 . . 3 (𝜑 → ∀𝑥𝐴𝑧𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
74 oveq2 7263 . . . . 5 (𝑥 = 𝑧 → (𝐶𝐿𝑥) = (𝐶𝐿𝑧))
7574breq1d 5080 . . . 4 (𝑥 = 𝑧 → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴))
7675rmo4 3660 . . 3 (∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑥𝐴𝑧𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
7773, 76sylibr 233 . 2 (𝜑 → ∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
78 reu5 3351 . 2 (∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ ∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴))
799, 77, 78sylanbrc 582 1 (𝜑 → ∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066   class class class wbr 5070  ran crn 5581  cfv 6418  (class class class)co 7255  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917  ∟Gcrag 26958  ⟂Gcperpg 26960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-cgrg 26776  df-leg 26848  df-mir 26918  df-rag 26959  df-perpg 26961
This theorem is referenced by:  footeq  26989  mideulem2  26999  lmieu  27049
  Copyright terms: Public domain W3C validator