MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnasmo Structured version   Visualization version   GIF version

Theorem nnasmo 8578
Description: There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
nnasmo (𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnasmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2753 . . . . 5 (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
2 nnacan 8543 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦))
31, 2imbitrid 244 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦))
433expb 1120 . . 3 ((𝐴 ∈ ω ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦))
54ralrimivva 3175 . 2 (𝐴 ∈ ω → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦))
6 oveq2 7354 . . . 4 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
76eqeq1d 2733 . . 3 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o 𝑦) = 𝐵))
87rmo4 3684 . 2 (∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵 ↔ ∀𝑥 ∈ ω ∀𝑦 ∈ ω (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦))
95, 8sylibr 234 1 (𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  ∃*wrmo 3345  (class class class)co 7346  ωcom 7796   +o coa 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389
This theorem is referenced by:  ttrcltr  9606
  Copyright terms: Public domain W3C validator