Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnasmo | Structured version Visualization version GIF version |
Description: There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
nnasmo | ⊢ (𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2764 | . . . . 5 ⊢ (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
2 | nnacan 8459 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦)) | |
3 | 1, 2 | syl5ib 243 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
4 | 3 | 3expb 1119 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
5 | 4 | ralrimivva 3123 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
6 | oveq2 7283 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
7 | 6 | eqeq1d 2740 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o 𝑦) = 𝐵)) |
8 | 7 | rmo4 3665 | . 2 ⊢ (∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵 ↔ ∀𝑥 ∈ ω ∀𝑦 ∈ ω (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
9 | 5, 8 | sylibr 233 | 1 ⊢ (𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃*wrmo 3067 (class class class)co 7275 ωcom 7712 +o coa 8294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 |
This theorem is referenced by: ttrcltr 9474 |
Copyright terms: Public domain | W3C validator |