![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnasmo | Structured version Visualization version GIF version |
Description: There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
nnasmo | ⊢ (𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2757 | . . . . 5 ⊢ (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
2 | nnacan 8634 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑥) = (𝐴 +o 𝑦) ↔ 𝑥 = 𝑦)) | |
3 | 1, 2 | imbitrid 243 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
4 | 3 | 3expb 1119 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
5 | 4 | ralrimivva 3199 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω ∀𝑦 ∈ ω (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
6 | oveq2 7420 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
7 | 6 | eqeq1d 2733 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = 𝐵 ↔ (𝐴 +o 𝑦) = 𝐵)) |
8 | 7 | rmo4 3726 | . 2 ⊢ (∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵 ↔ ∀𝑥 ∈ ω ∀𝑦 ∈ ω (((𝐴 +o 𝑥) = 𝐵 ∧ (𝐴 +o 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
9 | 5, 8 | sylibr 233 | 1 ⊢ (𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃*wrmo 3374 (class class class)co 7412 ωcom 7859 +o coa 8469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-oadd 8476 |
This theorem is referenced by: ttrcltr 9717 |
Copyright terms: Public domain | W3C validator |