MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndinvmod Structured version   Visualization version   GIF version

Theorem mndinvmod 17936
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
mndinvmod.b 𝐵 = (Base‘𝐺)
mndinvmod.0 0 = (0g𝐺)
mndinvmod.p + = (+g𝐺)
mndinvmod.m (𝜑𝐺 ∈ Mnd)
mndinvmod.a (𝜑𝐴𝐵)
Assertion
Ref Expression
mndinvmod (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤, 0   𝑤, +   𝜑,𝑤
Allowed substitution hint:   𝐺(𝑤)

Proof of Theorem mndinvmod
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 mndinvmod.m . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
2 simpl 485 . . . . . . . 8 ((𝑤𝐵𝑣𝐵) → 𝑤𝐵)
3 mndinvmod.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
4 mndinvmod.p . . . . . . . . 9 + = (+g𝐺)
5 mndinvmod.0 . . . . . . . . 9 0 = (0g𝐺)
63, 4, 5mndrid 17927 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑤𝐵) → (𝑤 + 0 ) = 𝑤)
71, 2, 6syl2an 597 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → (𝑤 + 0 ) = 𝑤)
87eqcomd 2826 . . . . . 6 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑤 = (𝑤 + 0 ))
98adantr 483 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = (𝑤 + 0 ))
10 oveq2 7157 . . . . . . . . 9 ( 0 = (𝐴 + 𝑣) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1110eqcoms 2828 . . . . . . . 8 ((𝐴 + 𝑣) = 0 → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1211adantl 484 . . . . . . 7 (((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1312adantl 484 . . . . . 6 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
1413adantl 484 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣)))
151adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝐺 ∈ Mnd)
162adantl 484 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑤𝐵)
17 mndinvmod.a . . . . . . . . 9 (𝜑𝐴𝐵)
1817adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝐴𝐵)
19 simpr 487 . . . . . . . . 9 ((𝑤𝐵𝑣𝐵) → 𝑣𝐵)
2019adantl 484 . . . . . . . 8 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → 𝑣𝐵)
213, 4mndass 17915 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑤𝐵𝐴𝐵𝑣𝐵)) → ((𝑤 + 𝐴) + 𝑣) = (𝑤 + (𝐴 + 𝑣)))
2221eqcomd 2826 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑤𝐵𝐴𝐵𝑣𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
2315, 16, 18, 20, 22syl13anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
2423adantr 483 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣))
25 oveq1 7156 . . . . . . . . 9 ((𝑤 + 𝐴) = 0 → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2625adantr 483 . . . . . . . 8 (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2726adantr 483 . . . . . . 7 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
2827adantl 484 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣))
293, 4, 5mndlid 17926 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑣𝐵) → ( 0 + 𝑣) = 𝑣)
301, 19, 29syl2an 597 . . . . . . 7 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → ( 0 + 𝑣) = 𝑣)
3130adantr 483 . . . . . 6 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ( 0 + 𝑣) = 𝑣)
3224, 28, 313eqtrd 2859 . . . . 5 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = 𝑣)
339, 14, 323eqtrd 2859 . . . 4 (((𝜑 ∧ (𝑤𝐵𝑣𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = 𝑣)
3433ex 415 . . 3 ((𝜑 ∧ (𝑤𝐵𝑣𝐵)) → ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
3534ralrimivva 3190 . 2 (𝜑 → ∀𝑤𝐵𝑣𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
36 oveq1 7156 . . . . 5 (𝑤 = 𝑣 → (𝑤 + 𝐴) = (𝑣 + 𝐴))
3736eqeq1d 2822 . . . 4 (𝑤 = 𝑣 → ((𝑤 + 𝐴) = 0 ↔ (𝑣 + 𝐴) = 0 ))
38 oveq2 7157 . . . . 5 (𝑤 = 𝑣 → (𝐴 + 𝑤) = (𝐴 + 𝑣))
3938eqeq1d 2822 . . . 4 (𝑤 = 𝑣 → ((𝐴 + 𝑤) = 0 ↔ (𝐴 + 𝑣) = 0 ))
4037, 39anbi12d 632 . . 3 (𝑤 = 𝑣 → (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )))
4140rmo4 3717 . 2 (∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ∀𝑤𝐵𝑣𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣))
4235, 41sylibr 236 1 (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wral 3137  ∃*wrmo 3140  cfv 6348  (class class class)co 7149  Basecbs 16478  +gcplusg 16560  0gc0g 16708  Mndcmnd 17906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-riota 7107  df-ov 7152  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907
This theorem is referenced by:  rinvmod  18924
  Copyright terms: Public domain W3C validator