Step | Hyp | Ref
| Expression |
1 | | mndinvmod.m |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) |
2 | | simpl 486 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
3 | | mndinvmod.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
4 | | mndinvmod.p |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
5 | | mndinvmod.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
6 | 3, 4, 5 | mndrid 18194 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑤 ∈ 𝐵) → (𝑤 + 0 ) = 𝑤) |
7 | 1, 2, 6 | syl2an 599 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑤 + 0 ) = 𝑤) |
8 | 7 | eqcomd 2743 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑤 = (𝑤 + 0 )) |
9 | 8 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = (𝑤 + 0 )) |
10 | | oveq2 7221 |
. . . . . . . . 9
⊢ ( 0 = (𝐴 + 𝑣) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) |
11 | 10 | eqcoms 2745 |
. . . . . . . 8
⊢ ((𝐴 + 𝑣) = 0 → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) |
12 | 11 | adantl 485 |
. . . . . . 7
⊢ (((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) |
13 | 12 | adantl 485 |
. . . . . 6
⊢ ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) |
14 | 13 | adantl 485 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + 0 ) = (𝑤 + (𝐴 + 𝑣))) |
15 | 1 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
16 | 2 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
17 | | mndinvmod.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
18 | 17 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝐴 ∈ 𝐵) |
19 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
20 | 19 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝐵) |
21 | 3, 4 | mndass 18182 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ (𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑤 + 𝐴) + 𝑣) = (𝑤 + (𝐴 + 𝑣))) |
22 | 21 | eqcomd 2743 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣)) |
23 | 15, 16, 18, 20, 22 | syl13anc 1374 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣)) |
24 | 23 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = ((𝑤 + 𝐴) + 𝑣)) |
25 | | oveq1 7220 |
. . . . . . . . 9
⊢ ((𝑤 + 𝐴) = 0 → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣)) |
26 | 25 | adantr 484 |
. . . . . . . 8
⊢ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣)) |
27 | 26 | adantr 484 |
. . . . . . 7
⊢ ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣)) |
28 | 27 | adantl 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ((𝑤 + 𝐴) + 𝑣) = ( 0 + 𝑣)) |
29 | 3, 4, 5 | mndlid 18193 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑣 ∈ 𝐵) → ( 0 + 𝑣) = 𝑣) |
30 | 1, 19, 29 | syl2an 599 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ( 0 + 𝑣) = 𝑣) |
31 | 30 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → ( 0 + 𝑣) = 𝑣) |
32 | 24, 28, 31 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → (𝑤 + (𝐴 + 𝑣)) = 𝑣) |
33 | 9, 14, 32 | 3eqtrd 2781 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) → 𝑤 = 𝑣) |
34 | 33 | ex 416 |
. . 3
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣)) |
35 | 34 | ralrimivva 3112 |
. 2
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣)) |
36 | | oveq1 7220 |
. . . . 5
⊢ (𝑤 = 𝑣 → (𝑤 + 𝐴) = (𝑣 + 𝐴)) |
37 | 36 | eqeq1d 2739 |
. . . 4
⊢ (𝑤 = 𝑣 → ((𝑤 + 𝐴) = 0 ↔ (𝑣 + 𝐴) = 0 )) |
38 | | oveq2 7221 |
. . . . 5
⊢ (𝑤 = 𝑣 → (𝐴 + 𝑤) = (𝐴 + 𝑣)) |
39 | 38 | eqeq1d 2739 |
. . . 4
⊢ (𝑤 = 𝑣 → ((𝐴 + 𝑤) = 0 ↔ (𝐴 + 𝑣) = 0 )) |
40 | 37, 39 | anbi12d 634 |
. . 3
⊢ (𝑤 = 𝑣 → (((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 ))) |
41 | 40 | rmo4 3643 |
. 2
⊢
(∃*𝑤 ∈
𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ↔ ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ((((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) ∧ ((𝑣 + 𝐴) = 0 ∧ (𝐴 + 𝑣) = 0 )) → 𝑤 = 𝑣)) |
42 | 35, 41 | sylibr 237 |
1
⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) |