Step | Hyp | Ref
| Expression |
1 | | cvmliftmo.b |
. . . . 5
⊢ 𝐵 = ∪
𝐶 |
2 | | cvmliftmo.y |
. . . . 5
⊢ 𝑌 = ∪
𝐾 |
3 | | cvmliftmo.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
4 | 3 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
5 | | cvmliftmo.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Conn) |
6 | 5 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝐾 ∈ Conn) |
7 | | cvmliftmo.l |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Conn) |
8 | 7 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝐾 ∈ 𝑛-Locally
Conn) |
9 | | cvmliftmo.o |
. . . . . 6
⊢ (𝜑 → 𝑂 ∈ 𝑌) |
10 | 9 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝑂 ∈ 𝑌) |
11 | | simplrl 773 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝑓 ∈ (𝐾 Cn 𝐶)) |
12 | | simplrr 774 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝑔 ∈ (𝐾 Cn 𝐶)) |
13 | | simprll 775 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝐹 ∘ 𝑓) = 𝐺) |
14 | | simprrl 777 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝐹 ∘ 𝑔) = 𝐺) |
15 | 13, 14 | eqtr4d 2781 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝑔)) |
16 | | simprlr 776 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝑓‘𝑂) = 𝑃) |
17 | | simprrr 778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝑔‘𝑂) = 𝑃) |
18 | 16, 17 | eqtr4d 2781 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝑓‘𝑂) = (𝑔‘𝑂)) |
19 | 1, 2, 4, 6, 8, 10,
11, 12, 15, 18 | cvmliftmoi 33145 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝑓 = 𝑔) |
20 | 19 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) → ((((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃)) → 𝑓 = 𝑔)) |
21 | 20 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (𝐾 Cn 𝐶)∀𝑔 ∈ (𝐾 Cn 𝐶)((((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃)) → 𝑓 = 𝑔)) |
22 | | coeq2 5756 |
. . . . 5
⊢ (𝑓 = 𝑔 → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝑔)) |
23 | 22 | eqeq1d 2740 |
. . . 4
⊢ (𝑓 = 𝑔 → ((𝐹 ∘ 𝑓) = 𝐺 ↔ (𝐹 ∘ 𝑔) = 𝐺)) |
24 | | fveq1 6755 |
. . . . 5
⊢ (𝑓 = 𝑔 → (𝑓‘𝑂) = (𝑔‘𝑂)) |
25 | 24 | eqeq1d 2740 |
. . . 4
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑂) = 𝑃 ↔ (𝑔‘𝑂) = 𝑃)) |
26 | 23, 25 | anbi12d 630 |
. . 3
⊢ (𝑓 = 𝑔 → (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) |
27 | 26 | rmo4 3660 |
. 2
⊢
(∃*𝑓 ∈
(𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ↔ ∀𝑓 ∈ (𝐾 Cn 𝐶)∀𝑔 ∈ (𝐾 Cn 𝐶)((((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃)) → 𝑓 = 𝑔)) |
28 | 21, 27 | sylibr 233 |
1
⊢ (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) |