| Step | Hyp | Ref
| Expression |
| 1 | | cvmliftmo.b |
. . . . 5
⊢ 𝐵 = ∪
𝐶 |
| 2 | | cvmliftmo.y |
. . . . 5
⊢ 𝑌 = ∪
𝐾 |
| 3 | | cvmliftmo.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 4 | 3 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 5 | | cvmliftmo.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Conn) |
| 6 | 5 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝐾 ∈ Conn) |
| 7 | | cvmliftmo.l |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Conn) |
| 8 | 7 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝐾 ∈ 𝑛-Locally
Conn) |
| 9 | | cvmliftmo.o |
. . . . . 6
⊢ (𝜑 → 𝑂 ∈ 𝑌) |
| 10 | 9 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝑂 ∈ 𝑌) |
| 11 | | simplrl 777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝑓 ∈ (𝐾 Cn 𝐶)) |
| 12 | | simplrr 778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝑔 ∈ (𝐾 Cn 𝐶)) |
| 13 | | simprll 779 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝐹 ∘ 𝑓) = 𝐺) |
| 14 | | simprrl 781 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝐹 ∘ 𝑔) = 𝐺) |
| 15 | 13, 14 | eqtr4d 2780 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝑔)) |
| 16 | | simprlr 780 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝑓‘𝑂) = 𝑃) |
| 17 | | simprrr 782 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝑔‘𝑂) = 𝑃) |
| 18 | 16, 17 | eqtr4d 2780 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → (𝑓‘𝑂) = (𝑔‘𝑂)) |
| 19 | 1, 2, 4, 6, 8, 10,
11, 12, 15, 18 | cvmliftmoi 35288 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) → 𝑓 = 𝑔) |
| 20 | 19 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) → ((((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃)) → 𝑓 = 𝑔)) |
| 21 | 20 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (𝐾 Cn 𝐶)∀𝑔 ∈ (𝐾 Cn 𝐶)((((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃)) → 𝑓 = 𝑔)) |
| 22 | | coeq2 5869 |
. . . . 5
⊢ (𝑓 = 𝑔 → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝑔)) |
| 23 | 22 | eqeq1d 2739 |
. . . 4
⊢ (𝑓 = 𝑔 → ((𝐹 ∘ 𝑓) = 𝐺 ↔ (𝐹 ∘ 𝑔) = 𝐺)) |
| 24 | | fveq1 6905 |
. . . . 5
⊢ (𝑓 = 𝑔 → (𝑓‘𝑂) = (𝑔‘𝑂)) |
| 25 | 24 | eqeq1d 2739 |
. . . 4
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑂) = 𝑃 ↔ (𝑔‘𝑂) = 𝑃)) |
| 26 | 23, 25 | anbi12d 632 |
. . 3
⊢ (𝑓 = 𝑔 → (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃))) |
| 27 | 26 | rmo4 3736 |
. 2
⊢
(∃*𝑓 ∈
(𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ↔ ∀𝑓 ∈ (𝐾 Cn 𝐶)∀𝑔 ∈ (𝐾 Cn 𝐶)((((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃) ∧ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘𝑂) = 𝑃)) → 𝑓 = 𝑔)) |
| 28 | 21, 27 | sylibr 234 |
1
⊢ (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) |