Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftmo Structured version   Visualization version   GIF version

Theorem cvmliftmo 31811
Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
cvmliftmo.b 𝐵 = 𝐶
cvmliftmo.y 𝑌 = 𝐾
cvmliftmo.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftmo.k (𝜑𝐾 ∈ Conn)
cvmliftmo.l (𝜑𝐾 ∈ 𝑛-Locally Conn)
cvmliftmo.o (𝜑𝑂𝑌)
cvmliftmo.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmliftmo.p (𝜑𝑃𝐵)
cvmliftmo.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmliftmo (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝐶,𝑓   𝑓,𝐺   𝑓,𝐾   𝑓,𝑂   𝜑,𝑓   𝑓,𝐹   𝑃,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝐽(𝑓)   𝑌(𝑓)

Proof of Theorem cvmliftmo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cvmliftmo.b . . . . 5 𝐵 = 𝐶
2 cvmliftmo.y . . . . 5 𝑌 = 𝐾
3 cvmliftmo.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
43ad2antrr 719 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftmo.k . . . . . 6 (𝜑𝐾 ∈ Conn)
65ad2antrr 719 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝐾 ∈ Conn)
7 cvmliftmo.l . . . . . 6 (𝜑𝐾 ∈ 𝑛-Locally Conn)
87ad2antrr 719 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝐾 ∈ 𝑛-Locally Conn)
9 cvmliftmo.o . . . . . 6 (𝜑𝑂𝑌)
109ad2antrr 719 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝑂𝑌)
11 simplrl 797 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝑓 ∈ (𝐾 Cn 𝐶))
12 simplrr 798 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝑔 ∈ (𝐾 Cn 𝐶))
13 simprll 799 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝐹𝑓) = 𝐺)
14 simprrl 801 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝐹𝑔) = 𝐺)
1513, 14eqtr4d 2863 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝐹𝑓) = (𝐹𝑔))
16 simprlr 800 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝑓𝑂) = 𝑃)
17 simprrr 802 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝑔𝑂) = 𝑃)
1816, 17eqtr4d 2863 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝑓𝑂) = (𝑔𝑂))
191, 2, 4, 6, 8, 10, 11, 12, 15, 18cvmliftmoi 31810 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝑓 = 𝑔)
2019ex 403 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) → ((((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃)) → 𝑓 = 𝑔))
2120ralrimivva 3179 . 2 (𝜑 → ∀𝑓 ∈ (𝐾 Cn 𝐶)∀𝑔 ∈ (𝐾 Cn 𝐶)((((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃)) → 𝑓 = 𝑔))
22 coeq2 5512 . . . . 5 (𝑓 = 𝑔 → (𝐹𝑓) = (𝐹𝑔))
2322eqeq1d 2826 . . . 4 (𝑓 = 𝑔 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝑔) = 𝐺))
24 fveq1 6431 . . . . 5 (𝑓 = 𝑔 → (𝑓𝑂) = (𝑔𝑂))
2524eqeq1d 2826 . . . 4 (𝑓 = 𝑔 → ((𝑓𝑂) = 𝑃 ↔ (𝑔𝑂) = 𝑃))
2623, 25anbi12d 626 . . 3 (𝑓 = 𝑔 → (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃)))
2726rmo4 3623 . 2 (∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ∀𝑓 ∈ (𝐾 Cn 𝐶)∀𝑔 ∈ (𝐾 Cn 𝐶)((((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃)) → 𝑓 = 𝑔))
2821, 27sylibr 226 1 (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wral 3116  ∃*wrmo 3119   cuni 4657  ccom 5345  cfv 6122  (class class class)co 6904   Cn ccn 21398  Conncconn 21584  𝑛-Locally cnlly 21638   CovMap ccvm 31782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-oadd 7829  df-er 8008  df-map 8123  df-en 8222  df-fin 8225  df-fi 8585  df-rest 16435  df-topgen 16456  df-top 21068  df-topon 21085  df-bases 21120  df-cld 21193  df-nei 21272  df-cn 21401  df-conn 21585  df-nlly 21640  df-hmeo 21928  df-cvm 31783
This theorem is referenced by:  cvmliftlem14  31824  cvmlift2lem13  31842  cvmlift3  31855
  Copyright terms: Public domain W3C validator