Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftmo Structured version   Visualization version   GIF version

Theorem cvmliftmo 35289
Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
cvmliftmo.b 𝐵 = 𝐶
cvmliftmo.y 𝑌 = 𝐾
cvmliftmo.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftmo.k (𝜑𝐾 ∈ Conn)
cvmliftmo.l (𝜑𝐾 ∈ 𝑛-Locally Conn)
cvmliftmo.o (𝜑𝑂𝑌)
cvmliftmo.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmliftmo.p (𝜑𝑃𝐵)
cvmliftmo.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmliftmo (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝐶,𝑓   𝑓,𝐺   𝑓,𝐾   𝑓,𝑂   𝜑,𝑓   𝑓,𝐹   𝑃,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝐽(𝑓)   𝑌(𝑓)

Proof of Theorem cvmliftmo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cvmliftmo.b . . . . 5 𝐵 = 𝐶
2 cvmliftmo.y . . . . 5 𝑌 = 𝐾
3 cvmliftmo.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
43ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftmo.k . . . . . 6 (𝜑𝐾 ∈ Conn)
65ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝐾 ∈ Conn)
7 cvmliftmo.l . . . . . 6 (𝜑𝐾 ∈ 𝑛-Locally Conn)
87ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝐾 ∈ 𝑛-Locally Conn)
9 cvmliftmo.o . . . . . 6 (𝜑𝑂𝑌)
109ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝑂𝑌)
11 simplrl 777 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝑓 ∈ (𝐾 Cn 𝐶))
12 simplrr 778 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝑔 ∈ (𝐾 Cn 𝐶))
13 simprll 779 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝐹𝑓) = 𝐺)
14 simprrl 781 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝐹𝑔) = 𝐺)
1513, 14eqtr4d 2780 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝐹𝑓) = (𝐹𝑔))
16 simprlr 780 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝑓𝑂) = 𝑃)
17 simprrr 782 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝑔𝑂) = 𝑃)
1816, 17eqtr4d 2780 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → (𝑓𝑂) = (𝑔𝑂))
191, 2, 4, 6, 8, 10, 11, 12, 15, 18cvmliftmoi 35288 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) ∧ (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃))) → 𝑓 = 𝑔)
2019ex 412 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐾 Cn 𝐶) ∧ 𝑔 ∈ (𝐾 Cn 𝐶))) → ((((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃)) → 𝑓 = 𝑔))
2120ralrimivva 3202 . 2 (𝜑 → ∀𝑓 ∈ (𝐾 Cn 𝐶)∀𝑔 ∈ (𝐾 Cn 𝐶)((((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃)) → 𝑓 = 𝑔))
22 coeq2 5869 . . . . 5 (𝑓 = 𝑔 → (𝐹𝑓) = (𝐹𝑔))
2322eqeq1d 2739 . . . 4 (𝑓 = 𝑔 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝑔) = 𝐺))
24 fveq1 6905 . . . . 5 (𝑓 = 𝑔 → (𝑓𝑂) = (𝑔𝑂))
2524eqeq1d 2739 . . . 4 (𝑓 = 𝑔 → ((𝑓𝑂) = 𝑃 ↔ (𝑔𝑂) = 𝑃))
2623, 25anbi12d 632 . . 3 (𝑓 = 𝑔 → (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃)))
2726rmo4 3736 . 2 (∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ∀𝑓 ∈ (𝐾 Cn 𝐶)∀𝑔 ∈ (𝐾 Cn 𝐶)((((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ((𝐹𝑔) = 𝐺 ∧ (𝑔𝑂) = 𝑃)) → 𝑓 = 𝑔))
2821, 27sylibr 234 1 (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  ∃*wrmo 3379   cuni 4907  ccom 5689  cfv 6561  (class class class)co 7431   Cn ccn 23232  Conncconn 23419  𝑛-Locally cnlly 23473   CovMap ccvm 35260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-map 8868  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-nei 23106  df-cn 23235  df-conn 23420  df-nlly 23475  df-hmeo 23763  df-cvm 35261
This theorem is referenced by:  cvmliftlem14  35302  cvmlift2lem13  35320  cvmlift3  35333
  Copyright terms: Public domain W3C validator