MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspextmo Structured version   Visualization version   GIF version

Theorem lspextmo 19455
Description: A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
lspextmo.b 𝐵 = (Base‘𝑆)
lspextmo.k 𝐾 = (LSpan‘𝑆)
Assertion
Ref Expression
lspextmo ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔𝑋) = 𝐹)
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝐾   𝑆,𝑔   𝑇,𝑔   𝑔,𝑋

Proof of Theorem lspextmo
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2801 . . . 4 (((𝑔𝑋) = 𝐹 ∧ (𝑋) = 𝐹) → (𝑔𝑋) = (𝑋))
2 inss1 4053 . . . . . . . . 9 (𝑔) ⊆ 𝑔
3 dmss 5570 . . . . . . . . 9 ((𝑔) ⊆ 𝑔 → dom (𝑔) ⊆ dom 𝑔)
42, 3ax-mp 5 . . . . . . . 8 dom (𝑔) ⊆ dom 𝑔
5 lspextmo.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
6 eqid 2778 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
75, 6lmhmf 19433 . . . . . . . . . . . 12 (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑔:𝐵⟶(Base‘𝑇))
87ad2antrl 718 . . . . . . . . . . 11 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → 𝑔:𝐵⟶(Base‘𝑇))
98ffnd 6294 . . . . . . . . . 10 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → 𝑔 Fn 𝐵)
109adantrr 707 . . . . . . . . 9 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → 𝑔 Fn 𝐵)
11 fndm 6237 . . . . . . . . 9 (𝑔 Fn 𝐵 → dom 𝑔 = 𝐵)
1210, 11syl 17 . . . . . . . 8 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → dom 𝑔 = 𝐵)
134, 12syl5sseq 3872 . . . . . . 7 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → dom (𝑔) ⊆ 𝐵)
14 simplr 759 . . . . . . . 8 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → (𝐾𝑋) = 𝐵)
15 lmhmlmod1 19432 . . . . . . . . . . 11 (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
1615adantr 474 . . . . . . . . . 10 ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod)
1716ad2antrl 718 . . . . . . . . 9 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → 𝑆 ∈ LMod)
18 eqid 2778 . . . . . . . . . . 11 (LSubSp‘𝑆) = (LSubSp‘𝑆)
1918lmhmeql 19454 . . . . . . . . . 10 ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) → dom (𝑔) ∈ (LSubSp‘𝑆))
2019ad2antrl 718 . . . . . . . . 9 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → dom (𝑔) ∈ (LSubSp‘𝑆))
21 simprr 763 . . . . . . . . 9 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → 𝑋 ⊆ dom (𝑔))
22 lspextmo.k . . . . . . . . . 10 𝐾 = (LSpan‘𝑆)
2318, 22lspssp 19387 . . . . . . . . 9 ((𝑆 ∈ LMod ∧ dom (𝑔) ∈ (LSubSp‘𝑆) ∧ 𝑋 ⊆ dom (𝑔)) → (𝐾𝑋) ⊆ dom (𝑔))
2417, 20, 21, 23syl3anc 1439 . . . . . . . 8 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → (𝐾𝑋) ⊆ dom (𝑔))
2514, 24eqsstr3d 3859 . . . . . . 7 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → 𝐵 ⊆ dom (𝑔))
2613, 25eqssd 3838 . . . . . 6 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → dom (𝑔) = 𝐵)
2726expr 450 . . . . 5 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → (𝑋 ⊆ dom (𝑔) → dom (𝑔) = 𝐵))
28 simprr 763 . . . . . . 7 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → ∈ (𝑆 LMHom 𝑇))
295, 6lmhmf 19433 . . . . . . 7 ( ∈ (𝑆 LMHom 𝑇) → :𝐵⟶(Base‘𝑇))
30 ffn 6293 . . . . . . 7 (:𝐵⟶(Base‘𝑇) → Fn 𝐵)
3128, 29, 303syl 18 . . . . . 6 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → Fn 𝐵)
32 simpll 757 . . . . . 6 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → 𝑋𝐵)
33 fnreseql 6592 . . . . . 6 ((𝑔 Fn 𝐵 Fn 𝐵𝑋𝐵) → ((𝑔𝑋) = (𝑋) ↔ 𝑋 ⊆ dom (𝑔)))
349, 31, 32, 33syl3anc 1439 . . . . 5 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → ((𝑔𝑋) = (𝑋) ↔ 𝑋 ⊆ dom (𝑔)))
35 fneqeql 6590 . . . . . 6 ((𝑔 Fn 𝐵 Fn 𝐵) → (𝑔 = ↔ dom (𝑔) = 𝐵))
369, 31, 35syl2anc 579 . . . . 5 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → (𝑔 = ↔ dom (𝑔) = 𝐵))
3727, 34, 363imtr4d 286 . . . 4 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → ((𝑔𝑋) = (𝑋) → 𝑔 = ))
381, 37syl5 34 . . 3 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → (((𝑔𝑋) = 𝐹 ∧ (𝑋) = 𝐹) → 𝑔 = ))
3938ralrimivva 3153 . 2 ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) → ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ ∈ (𝑆 LMHom 𝑇)(((𝑔𝑋) = 𝐹 ∧ (𝑋) = 𝐹) → 𝑔 = ))
40 reseq1 5638 . . . 4 (𝑔 = → (𝑔𝑋) = (𝑋))
4140eqeq1d 2780 . . 3 (𝑔 = → ((𝑔𝑋) = 𝐹 ↔ (𝑋) = 𝐹))
4241rmo4 3611 . 2 (∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔𝑋) = 𝐹 ↔ ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ ∈ (𝑆 LMHom 𝑇)(((𝑔𝑋) = 𝐹 ∧ (𝑋) = 𝐹) → 𝑔 = ))
4339, 42sylibr 226 1 ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔𝑋) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  ∃*wrmo 3093  cin 3791  wss 3792  dom cdm 5357  cres 5359   Fn wfn 6132  wf 6133  cfv 6137  (class class class)co 6924  Basecbs 16259  LModclmod 19259  LSubSpclss 19328  LSpanclspn 19370   LMHom clmhm 19418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-0g 16492  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-mhm 17725  df-submnd 17726  df-grp 17816  df-minusg 17817  df-sbg 17818  df-subg 17979  df-ghm 18046  df-mgp 18881  df-ur 18893  df-ring 18940  df-lmod 19261  df-lss 19329  df-lsp 19371  df-lmhm 19421
This theorem is referenced by:  frlmup4  20548
  Copyright terms: Public domain W3C validator