| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqtr3 2763 | . . . 4
⊢ (((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → (𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋)) | 
| 2 |  | inss1 4237 | . . . . . . . . 9
⊢ (𝑔 ∩ ℎ) ⊆ 𝑔 | 
| 3 |  | dmss 5913 | . . . . . . . . 9
⊢ ((𝑔 ∩ ℎ) ⊆ 𝑔 → dom (𝑔 ∩ ℎ) ⊆ dom 𝑔) | 
| 4 | 2, 3 | ax-mp 5 | . . . . . . . 8
⊢ dom
(𝑔 ∩ ℎ) ⊆ dom 𝑔 | 
| 5 |  | lspextmo.b | . . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑆) | 
| 6 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(Base‘𝑇) =
(Base‘𝑇) | 
| 7 | 5, 6 | lmhmf 21033 | . . . . . . . . . . . 12
⊢ (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑔:𝐵⟶(Base‘𝑇)) | 
| 8 | 7 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑔:𝐵⟶(Base‘𝑇)) | 
| 9 | 8 | ffnd 6737 | . . . . . . . . . 10
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑔 Fn 𝐵) | 
| 10 | 9 | adantrr 717 | . . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑔 Fn 𝐵) | 
| 11 | 10 | fndmd 6673 | . . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom 𝑔 = 𝐵) | 
| 12 | 4, 11 | sseqtrid 4026 | . . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) ⊆ 𝐵) | 
| 13 |  | simplr 769 | . . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → (𝐾‘𝑋) = 𝐵) | 
| 14 |  | lmhmlmod1 21032 | . . . . . . . . . . 11
⊢ (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | 
| 15 | 14 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod) | 
| 16 | 15 | ad2antrl 728 | . . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑆 ∈ LMod) | 
| 17 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(LSubSp‘𝑆) =
(LSubSp‘𝑆) | 
| 18 | 17 | lmhmeql 21054 | . . . . . . . . . 10
⊢ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) → dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆)) | 
| 19 | 18 | ad2antrl 728 | . . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆)) | 
| 20 |  | simprr 773 | . . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑋 ⊆ dom (𝑔 ∩ ℎ)) | 
| 21 |  | lspextmo.k | . . . . . . . . . 10
⊢ 𝐾 = (LSpan‘𝑆) | 
| 22 | 17, 21 | lspssp 20986 | . . . . . . . . 9
⊢ ((𝑆 ∈ LMod ∧ dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ)) → (𝐾‘𝑋) ⊆ dom (𝑔 ∩ ℎ)) | 
| 23 | 16, 19, 20, 22 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → (𝐾‘𝑋) ⊆ dom (𝑔 ∩ ℎ)) | 
| 24 | 13, 23 | eqsstrrd 4019 | . . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝐵 ⊆ dom (𝑔 ∩ ℎ)) | 
| 25 | 12, 24 | eqssd 4001 | . . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) = 𝐵) | 
| 26 | 25 | expr 456 | . . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (𝑋 ⊆ dom (𝑔 ∩ ℎ) → dom (𝑔 ∩ ℎ) = 𝐵)) | 
| 27 |  | simprr 773 | . . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ℎ ∈ (𝑆 LMHom 𝑇)) | 
| 28 | 5, 6 | lmhmf 21033 | . . . . . . 7
⊢ (ℎ ∈ (𝑆 LMHom 𝑇) → ℎ:𝐵⟶(Base‘𝑇)) | 
| 29 |  | ffn 6736 | . . . . . . 7
⊢ (ℎ:𝐵⟶(Base‘𝑇) → ℎ Fn 𝐵) | 
| 30 | 27, 28, 29 | 3syl 18 | . . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ℎ Fn 𝐵) | 
| 31 |  | simpll 767 | . . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑋 ⊆ 𝐵) | 
| 32 |  | fnreseql 7068 | . . . . . 6
⊢ ((𝑔 Fn 𝐵 ∧ ℎ Fn 𝐵 ∧ 𝑋 ⊆ 𝐵) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) | 
| 33 | 9, 30, 31, 32 | syl3anc 1373 | . . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) | 
| 34 |  | fneqeql 7066 | . . . . . 6
⊢ ((𝑔 Fn 𝐵 ∧ ℎ Fn 𝐵) → (𝑔 = ℎ ↔ dom (𝑔 ∩ ℎ) = 𝐵)) | 
| 35 | 9, 30, 34 | syl2anc 584 | . . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (𝑔 = ℎ ↔ dom (𝑔 ∩ ℎ) = 𝐵)) | 
| 36 | 26, 33, 35 | 3imtr4d 294 | . . . 4
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) → 𝑔 = ℎ)) | 
| 37 | 1, 36 | syl5 34 | . . 3
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) | 
| 38 | 37 | ralrimivva 3202 | . 2
⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ℎ ∈ (𝑆 LMHom 𝑇)(((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) | 
| 39 |  | reseq1 5991 | . . . 4
⊢ (𝑔 = ℎ → (𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋)) | 
| 40 | 39 | eqeq1d 2739 | . . 3
⊢ (𝑔 = ℎ → ((𝑔 ↾ 𝑋) = 𝐹 ↔ (ℎ ↾ 𝑋) = 𝐹)) | 
| 41 | 40 | rmo4 3736 | . 2
⊢
(∃*𝑔 ∈
(𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹 ↔ ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ℎ ∈ (𝑆 LMHom 𝑇)(((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) | 
| 42 | 38, 41 | sylibr 234 | 1
⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹) |