MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspextmo Structured version   Visualization version   GIF version

Theorem lspextmo 20532
Description: A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
lspextmo.b 𝐡 = (Baseβ€˜π‘†)
lspextmo.k 𝐾 = (LSpanβ€˜π‘†)
Assertion
Ref Expression
lspextmo ((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) β†’ βˆƒ*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 β†Ύ 𝑋) = 𝐹)
Distinct variable groups:   𝐡,𝑔   𝑔,𝐹   𝑔,𝐾   𝑆,𝑔   𝑇,𝑔   𝑔,𝑋

Proof of Theorem lspextmo
Dummy variable β„Ž is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2759 . . . 4 (((𝑔 β†Ύ 𝑋) = 𝐹 ∧ (β„Ž β†Ύ 𝑋) = 𝐹) β†’ (𝑔 β†Ύ 𝑋) = (β„Ž β†Ύ 𝑋))
2 inss1 4189 . . . . . . . . 9 (𝑔 ∩ β„Ž) βŠ† 𝑔
3 dmss 5859 . . . . . . . . 9 ((𝑔 ∩ β„Ž) βŠ† 𝑔 β†’ dom (𝑔 ∩ β„Ž) βŠ† dom 𝑔)
42, 3ax-mp 5 . . . . . . . 8 dom (𝑔 ∩ β„Ž) βŠ† dom 𝑔
5 lspextmo.b . . . . . . . . . . . . 13 𝐡 = (Baseβ€˜π‘†)
6 eqid 2733 . . . . . . . . . . . . 13 (Baseβ€˜π‘‡) = (Baseβ€˜π‘‡)
75, 6lmhmf 20510 . . . . . . . . . . . 12 (𝑔 ∈ (𝑆 LMHom 𝑇) β†’ 𝑔:𝐡⟢(Baseβ€˜π‘‡))
87ad2antrl 727 . . . . . . . . . . 11 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ 𝑔:𝐡⟢(Baseβ€˜π‘‡))
98ffnd 6670 . . . . . . . . . 10 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ 𝑔 Fn 𝐡)
109adantrr 716 . . . . . . . . 9 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ 𝑔 Fn 𝐡)
1110fndmd 6608 . . . . . . . 8 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ dom 𝑔 = 𝐡)
124, 11sseqtrid 3997 . . . . . . 7 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ dom (𝑔 ∩ β„Ž) βŠ† 𝐡)
13 simplr 768 . . . . . . . 8 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ (πΎβ€˜π‘‹) = 𝐡)
14 lmhmlmod1 20509 . . . . . . . . . . 11 (𝑔 ∈ (𝑆 LMHom 𝑇) β†’ 𝑆 ∈ LMod)
1514adantr 482 . . . . . . . . . 10 ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) β†’ 𝑆 ∈ LMod)
1615ad2antrl 727 . . . . . . . . 9 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ 𝑆 ∈ LMod)
17 eqid 2733 . . . . . . . . . . 11 (LSubSpβ€˜π‘†) = (LSubSpβ€˜π‘†)
1817lmhmeql 20531 . . . . . . . . . 10 ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) β†’ dom (𝑔 ∩ β„Ž) ∈ (LSubSpβ€˜π‘†))
1918ad2antrl 727 . . . . . . . . 9 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ dom (𝑔 ∩ β„Ž) ∈ (LSubSpβ€˜π‘†))
20 simprr 772 . . . . . . . . 9 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))
21 lspextmo.k . . . . . . . . . 10 𝐾 = (LSpanβ€˜π‘†)
2217, 21lspssp 20464 . . . . . . . . 9 ((𝑆 ∈ LMod ∧ dom (𝑔 ∩ β„Ž) ∈ (LSubSpβ€˜π‘†) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž)) β†’ (πΎβ€˜π‘‹) βŠ† dom (𝑔 ∩ β„Ž))
2316, 19, 20, 22syl3anc 1372 . . . . . . . 8 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ (πΎβ€˜π‘‹) βŠ† dom (𝑔 ∩ β„Ž))
2413, 23eqsstrrd 3984 . . . . . . 7 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ 𝐡 βŠ† dom (𝑔 ∩ β„Ž))
2512, 24eqssd 3962 . . . . . 6 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 βŠ† dom (𝑔 ∩ β„Ž))) β†’ dom (𝑔 ∩ β„Ž) = 𝐡)
2625expr 458 . . . . 5 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ (𝑋 βŠ† dom (𝑔 ∩ β„Ž) β†’ dom (𝑔 ∩ β„Ž) = 𝐡))
27 simprr 772 . . . . . . 7 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ β„Ž ∈ (𝑆 LMHom 𝑇))
285, 6lmhmf 20510 . . . . . . 7 (β„Ž ∈ (𝑆 LMHom 𝑇) β†’ β„Ž:𝐡⟢(Baseβ€˜π‘‡))
29 ffn 6669 . . . . . . 7 (β„Ž:𝐡⟢(Baseβ€˜π‘‡) β†’ β„Ž Fn 𝐡)
3027, 28, 293syl 18 . . . . . 6 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ β„Ž Fn 𝐡)
31 simpll 766 . . . . . 6 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ 𝑋 βŠ† 𝐡)
32 fnreseql 6999 . . . . . 6 ((𝑔 Fn 𝐡 ∧ β„Ž Fn 𝐡 ∧ 𝑋 βŠ† 𝐡) β†’ ((𝑔 β†Ύ 𝑋) = (β„Ž β†Ύ 𝑋) ↔ 𝑋 βŠ† dom (𝑔 ∩ β„Ž)))
339, 30, 31, 32syl3anc 1372 . . . . 5 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ ((𝑔 β†Ύ 𝑋) = (β„Ž β†Ύ 𝑋) ↔ 𝑋 βŠ† dom (𝑔 ∩ β„Ž)))
34 fneqeql 6997 . . . . . 6 ((𝑔 Fn 𝐡 ∧ β„Ž Fn 𝐡) β†’ (𝑔 = β„Ž ↔ dom (𝑔 ∩ β„Ž) = 𝐡))
359, 30, 34syl2anc 585 . . . . 5 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ (𝑔 = β„Ž ↔ dom (𝑔 ∩ β„Ž) = 𝐡))
3626, 33, 353imtr4d 294 . . . 4 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ ((𝑔 β†Ύ 𝑋) = (β„Ž β†Ύ 𝑋) β†’ 𝑔 = β„Ž))
371, 36syl5 34 . . 3 (((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ β„Ž ∈ (𝑆 LMHom 𝑇))) β†’ (((𝑔 β†Ύ 𝑋) = 𝐹 ∧ (β„Ž β†Ύ 𝑋) = 𝐹) β†’ 𝑔 = β„Ž))
3837ralrimivva 3194 . 2 ((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) β†’ βˆ€π‘” ∈ (𝑆 LMHom 𝑇)βˆ€β„Ž ∈ (𝑆 LMHom 𝑇)(((𝑔 β†Ύ 𝑋) = 𝐹 ∧ (β„Ž β†Ύ 𝑋) = 𝐹) β†’ 𝑔 = β„Ž))
39 reseq1 5932 . . . 4 (𝑔 = β„Ž β†’ (𝑔 β†Ύ 𝑋) = (β„Ž β†Ύ 𝑋))
4039eqeq1d 2735 . . 3 (𝑔 = β„Ž β†’ ((𝑔 β†Ύ 𝑋) = 𝐹 ↔ (β„Ž β†Ύ 𝑋) = 𝐹))
4140rmo4 3689 . 2 (βˆƒ*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 β†Ύ 𝑋) = 𝐹 ↔ βˆ€π‘” ∈ (𝑆 LMHom 𝑇)βˆ€β„Ž ∈ (𝑆 LMHom 𝑇)(((𝑔 β†Ύ 𝑋) = 𝐹 ∧ (β„Ž β†Ύ 𝑋) = 𝐹) β†’ 𝑔 = β„Ž))
4238, 41sylibr 233 1 ((𝑋 βŠ† 𝐡 ∧ (πΎβ€˜π‘‹) = 𝐡) β†’ βˆƒ*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 β†Ύ 𝑋) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒ*wrmo 3351   ∩ cin 3910   βŠ† wss 3911  dom cdm 5634   β†Ύ cres 5636   Fn wfn 6492  βŸΆwf 6493  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  LModclmod 20336  LSubSpclss 20407  LSpanclspn 20447   LMHom clmhm 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-map 8770  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-0g 17328  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-mhm 18606  df-submnd 18607  df-grp 18756  df-minusg 18757  df-sbg 18758  df-subg 18930  df-ghm 19011  df-mgp 19902  df-ur 19919  df-ring 19971  df-lmod 20338  df-lss 20408  df-lsp 20448  df-lmhm 20498
This theorem is referenced by:  frlmup4  21223
  Copyright terms: Public domain W3C validator