Step | Hyp | Ref
| Expression |
1 | | eqtr3 2801 |
. . . 4
⊢ (((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → (𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋)) |
2 | | inss1 4053 |
. . . . . . . . 9
⊢ (𝑔 ∩ ℎ) ⊆ 𝑔 |
3 | | dmss 5568 |
. . . . . . . . 9
⊢ ((𝑔 ∩ ℎ) ⊆ 𝑔 → dom (𝑔 ∩ ℎ) ⊆ dom 𝑔) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . 8
⊢ dom
(𝑔 ∩ ℎ) ⊆ dom 𝑔 |
5 | | lspextmo.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑆) |
6 | | eqid 2778 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑇) =
(Base‘𝑇) |
7 | 5, 6 | lmhmf 19429 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑔:𝐵⟶(Base‘𝑇)) |
8 | 7 | ad2antrl 718 |
. . . . . . . . . . 11
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑔:𝐵⟶(Base‘𝑇)) |
9 | 8 | ffnd 6292 |
. . . . . . . . . 10
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑔 Fn 𝐵) |
10 | 9 | adantrr 707 |
. . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑔 Fn 𝐵) |
11 | | fndm 6235 |
. . . . . . . . 9
⊢ (𝑔 Fn 𝐵 → dom 𝑔 = 𝐵) |
12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom 𝑔 = 𝐵) |
13 | 4, 12 | syl5sseq 3872 |
. . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) ⊆ 𝐵) |
14 | | simplr 759 |
. . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → (𝐾‘𝑋) = 𝐵) |
15 | | lmhmlmod1 19428 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
16 | 15 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod) |
17 | 16 | ad2antrl 718 |
. . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑆 ∈ LMod) |
18 | | eqid 2778 |
. . . . . . . . . . 11
⊢
(LSubSp‘𝑆) =
(LSubSp‘𝑆) |
19 | 18 | lmhmeql 19450 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) → dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆)) |
20 | 19 | ad2antrl 718 |
. . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆)) |
21 | | simprr 763 |
. . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑋 ⊆ dom (𝑔 ∩ ℎ)) |
22 | | lspextmo.k |
. . . . . . . . . 10
⊢ 𝐾 = (LSpan‘𝑆) |
23 | 18, 22 | lspssp 19383 |
. . . . . . . . 9
⊢ ((𝑆 ∈ LMod ∧ dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ)) → (𝐾‘𝑋) ⊆ dom (𝑔 ∩ ℎ)) |
24 | 17, 20, 21, 23 | syl3anc 1439 |
. . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → (𝐾‘𝑋) ⊆ dom (𝑔 ∩ ℎ)) |
25 | 14, 24 | eqsstr3d 3859 |
. . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝐵 ⊆ dom (𝑔 ∩ ℎ)) |
26 | 13, 25 | eqssd 3838 |
. . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) = 𝐵) |
27 | 26 | expr 450 |
. . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (𝑋 ⊆ dom (𝑔 ∩ ℎ) → dom (𝑔 ∩ ℎ) = 𝐵)) |
28 | | simprr 763 |
. . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ℎ ∈ (𝑆 LMHom 𝑇)) |
29 | 5, 6 | lmhmf 19429 |
. . . . . . 7
⊢ (ℎ ∈ (𝑆 LMHom 𝑇) → ℎ:𝐵⟶(Base‘𝑇)) |
30 | | ffn 6291 |
. . . . . . 7
⊢ (ℎ:𝐵⟶(Base‘𝑇) → ℎ Fn 𝐵) |
31 | 28, 29, 30 | 3syl 18 |
. . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ℎ Fn 𝐵) |
32 | | simpll 757 |
. . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑋 ⊆ 𝐵) |
33 | | fnreseql 6590 |
. . . . . 6
⊢ ((𝑔 Fn 𝐵 ∧ ℎ Fn 𝐵 ∧ 𝑋 ⊆ 𝐵) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) |
34 | 9, 31, 32, 33 | syl3anc 1439 |
. . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) |
35 | | fneqeql 6588 |
. . . . . 6
⊢ ((𝑔 Fn 𝐵 ∧ ℎ Fn 𝐵) → (𝑔 = ℎ ↔ dom (𝑔 ∩ ℎ) = 𝐵)) |
36 | 9, 31, 35 | syl2anc 579 |
. . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (𝑔 = ℎ ↔ dom (𝑔 ∩ ℎ) = 𝐵)) |
37 | 27, 34, 36 | 3imtr4d 286 |
. . . 4
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) → 𝑔 = ℎ)) |
38 | 1, 37 | syl5 34 |
. . 3
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) |
39 | 38 | ralrimivva 3153 |
. 2
⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ℎ ∈ (𝑆 LMHom 𝑇)(((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) |
40 | | reseq1 5636 |
. . . 4
⊢ (𝑔 = ℎ → (𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋)) |
41 | 40 | eqeq1d 2780 |
. . 3
⊢ (𝑔 = ℎ → ((𝑔 ↾ 𝑋) = 𝐹 ↔ (ℎ ↾ 𝑋) = 𝐹)) |
42 | 41 | rmo4 3611 |
. 2
⊢
(∃*𝑔 ∈
(𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹 ↔ ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ℎ ∈ (𝑆 LMHom 𝑇)(((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) |
43 | 39, 42 | sylibr 226 |
1
⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹) |