Step | Hyp | Ref
| Expression |
1 | | eqtr3 2763 |
. . . 4
⊢ (((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → (𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋)) |
2 | | inss1 4143 |
. . . . . . . . 9
⊢ (𝑔 ∩ ℎ) ⊆ 𝑔 |
3 | | dmss 5771 |
. . . . . . . . 9
⊢ ((𝑔 ∩ ℎ) ⊆ 𝑔 → dom (𝑔 ∩ ℎ) ⊆ dom 𝑔) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . 8
⊢ dom
(𝑔 ∩ ℎ) ⊆ dom 𝑔 |
5 | | lspextmo.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑆) |
6 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑇) =
(Base‘𝑇) |
7 | 5, 6 | lmhmf 20071 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑔:𝐵⟶(Base‘𝑇)) |
8 | 7 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑔:𝐵⟶(Base‘𝑇)) |
9 | 8 | ffnd 6546 |
. . . . . . . . . 10
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑔 Fn 𝐵) |
10 | 9 | adantrr 717 |
. . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑔 Fn 𝐵) |
11 | 10 | fndmd 6483 |
. . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom 𝑔 = 𝐵) |
12 | 4, 11 | sseqtrid 3953 |
. . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) ⊆ 𝐵) |
13 | | simplr 769 |
. . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → (𝐾‘𝑋) = 𝐵) |
14 | | lmhmlmod1 20070 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
15 | 14 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod) |
16 | 15 | ad2antrl 728 |
. . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑆 ∈ LMod) |
17 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(LSubSp‘𝑆) =
(LSubSp‘𝑆) |
18 | 17 | lmhmeql 20092 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) → dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆)) |
19 | 18 | ad2antrl 728 |
. . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆)) |
20 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝑋 ⊆ dom (𝑔 ∩ ℎ)) |
21 | | lspextmo.k |
. . . . . . . . . 10
⊢ 𝐾 = (LSpan‘𝑆) |
22 | 17, 21 | lspssp 20025 |
. . . . . . . . 9
⊢ ((𝑆 ∈ LMod ∧ dom (𝑔 ∩ ℎ) ∈ (LSubSp‘𝑆) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ)) → (𝐾‘𝑋) ⊆ dom (𝑔 ∩ ℎ)) |
23 | 16, 19, 20, 22 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → (𝐾‘𝑋) ⊆ dom (𝑔 ∩ ℎ)) |
24 | 13, 23 | eqsstrrd 3940 |
. . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → 𝐵 ⊆ dom (𝑔 ∩ ℎ)) |
25 | 12, 24 | eqssd 3918 |
. . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) → dom (𝑔 ∩ ℎ) = 𝐵) |
26 | 25 | expr 460 |
. . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (𝑋 ⊆ dom (𝑔 ∩ ℎ) → dom (𝑔 ∩ ℎ) = 𝐵)) |
27 | | simprr 773 |
. . . . . . 7
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ℎ ∈ (𝑆 LMHom 𝑇)) |
28 | 5, 6 | lmhmf 20071 |
. . . . . . 7
⊢ (ℎ ∈ (𝑆 LMHom 𝑇) → ℎ:𝐵⟶(Base‘𝑇)) |
29 | | ffn 6545 |
. . . . . . 7
⊢ (ℎ:𝐵⟶(Base‘𝑇) → ℎ Fn 𝐵) |
30 | 27, 28, 29 | 3syl 18 |
. . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ℎ Fn 𝐵) |
31 | | simpll 767 |
. . . . . 6
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → 𝑋 ⊆ 𝐵) |
32 | | fnreseql 6868 |
. . . . . 6
⊢ ((𝑔 Fn 𝐵 ∧ ℎ Fn 𝐵 ∧ 𝑋 ⊆ 𝐵) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) |
33 | 9, 30, 31, 32 | syl3anc 1373 |
. . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝑔 ∩ ℎ))) |
34 | | fneqeql 6866 |
. . . . . 6
⊢ ((𝑔 Fn 𝐵 ∧ ℎ Fn 𝐵) → (𝑔 = ℎ ↔ dom (𝑔 ∩ ℎ) = 𝐵)) |
35 | 9, 30, 34 | syl2anc 587 |
. . . . 5
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (𝑔 = ℎ ↔ dom (𝑔 ∩ ℎ) = 𝐵)) |
36 | 26, 33, 35 | 3imtr4d 297 |
. . . 4
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → ((𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋) → 𝑔 = ℎ)) |
37 | 1, 36 | syl5 34 |
. . 3
⊢ (((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ℎ ∈ (𝑆 LMHom 𝑇))) → (((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) |
38 | 37 | ralrimivva 3112 |
. 2
⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ℎ ∈ (𝑆 LMHom 𝑇)(((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) |
39 | | reseq1 5845 |
. . . 4
⊢ (𝑔 = ℎ → (𝑔 ↾ 𝑋) = (ℎ ↾ 𝑋)) |
40 | 39 | eqeq1d 2739 |
. . 3
⊢ (𝑔 = ℎ → ((𝑔 ↾ 𝑋) = 𝐹 ↔ (ℎ ↾ 𝑋) = 𝐹)) |
41 | 40 | rmo4 3643 |
. 2
⊢
(∃*𝑔 ∈
(𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹 ↔ ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ℎ ∈ (𝑆 LMHom 𝑇)(((𝑔 ↾ 𝑋) = 𝐹 ∧ (ℎ ↾ 𝑋) = 𝐹) → 𝑔 = ℎ)) |
42 | 38, 41 | sylibr 237 |
1
⊢ ((𝑋 ⊆ 𝐵 ∧ (𝐾‘𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔 ↾ 𝑋) = 𝐹) |