MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspextmo Structured version   Visualization version   GIF version

Theorem lspextmo 20979
Description: A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
lspextmo.b 𝐵 = (Base‘𝑆)
lspextmo.k 𝐾 = (LSpan‘𝑆)
Assertion
Ref Expression
lspextmo ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔𝑋) = 𝐹)
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝐾   𝑆,𝑔   𝑇,𝑔   𝑔,𝑋

Proof of Theorem lspextmo
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2751 . . . 4 (((𝑔𝑋) = 𝐹 ∧ (𝑋) = 𝐹) → (𝑔𝑋) = (𝑋))
2 inss1 4190 . . . . . . . . 9 (𝑔) ⊆ 𝑔
3 dmss 5849 . . . . . . . . 9 ((𝑔) ⊆ 𝑔 → dom (𝑔) ⊆ dom 𝑔)
42, 3ax-mp 5 . . . . . . . 8 dom (𝑔) ⊆ dom 𝑔
5 lspextmo.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
6 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
75, 6lmhmf 20957 . . . . . . . . . . . 12 (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑔:𝐵⟶(Base‘𝑇))
87ad2antrl 728 . . . . . . . . . . 11 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → 𝑔:𝐵⟶(Base‘𝑇))
98ffnd 6657 . . . . . . . . . 10 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → 𝑔 Fn 𝐵)
109adantrr 717 . . . . . . . . 9 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → 𝑔 Fn 𝐵)
1110fndmd 6591 . . . . . . . 8 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → dom 𝑔 = 𝐵)
124, 11sseqtrid 3980 . . . . . . 7 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → dom (𝑔) ⊆ 𝐵)
13 simplr 768 . . . . . . . 8 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → (𝐾𝑋) = 𝐵)
14 lmhmlmod1 20956 . . . . . . . . . . 11 (𝑔 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
1514adantr 480 . . . . . . . . . 10 ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod)
1615ad2antrl 728 . . . . . . . . 9 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → 𝑆 ∈ LMod)
17 eqid 2729 . . . . . . . . . . 11 (LSubSp‘𝑆) = (LSubSp‘𝑆)
1817lmhmeql 20978 . . . . . . . . . 10 ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) → dom (𝑔) ∈ (LSubSp‘𝑆))
1918ad2antrl 728 . . . . . . . . 9 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → dom (𝑔) ∈ (LSubSp‘𝑆))
20 simprr 772 . . . . . . . . 9 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → 𝑋 ⊆ dom (𝑔))
21 lspextmo.k . . . . . . . . . 10 𝐾 = (LSpan‘𝑆)
2217, 21lspssp 20910 . . . . . . . . 9 ((𝑆 ∈ LMod ∧ dom (𝑔) ∈ (LSubSp‘𝑆) ∧ 𝑋 ⊆ dom (𝑔)) → (𝐾𝑋) ⊆ dom (𝑔))
2316, 19, 20, 22syl3anc 1373 . . . . . . . 8 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → (𝐾𝑋) ⊆ dom (𝑔))
2413, 23eqsstrrd 3973 . . . . . . 7 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → 𝐵 ⊆ dom (𝑔))
2512, 24eqssd 3955 . . . . . 6 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ ((𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇)) ∧ 𝑋 ⊆ dom (𝑔))) → dom (𝑔) = 𝐵)
2625expr 456 . . . . 5 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → (𝑋 ⊆ dom (𝑔) → dom (𝑔) = 𝐵))
27 simprr 772 . . . . . . 7 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → ∈ (𝑆 LMHom 𝑇))
285, 6lmhmf 20957 . . . . . . 7 ( ∈ (𝑆 LMHom 𝑇) → :𝐵⟶(Base‘𝑇))
29 ffn 6656 . . . . . . 7 (:𝐵⟶(Base‘𝑇) → Fn 𝐵)
3027, 28, 293syl 18 . . . . . 6 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → Fn 𝐵)
31 simpll 766 . . . . . 6 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → 𝑋𝐵)
32 fnreseql 6986 . . . . . 6 ((𝑔 Fn 𝐵 Fn 𝐵𝑋𝐵) → ((𝑔𝑋) = (𝑋) ↔ 𝑋 ⊆ dom (𝑔)))
339, 30, 31, 32syl3anc 1373 . . . . 5 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → ((𝑔𝑋) = (𝑋) ↔ 𝑋 ⊆ dom (𝑔)))
34 fneqeql 6984 . . . . . 6 ((𝑔 Fn 𝐵 Fn 𝐵) → (𝑔 = ↔ dom (𝑔) = 𝐵))
359, 30, 34syl2anc 584 . . . . 5 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → (𝑔 = ↔ dom (𝑔) = 𝐵))
3626, 33, 353imtr4d 294 . . . 4 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → ((𝑔𝑋) = (𝑋) → 𝑔 = ))
371, 36syl5 34 . . 3 (((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) ∧ (𝑔 ∈ (𝑆 LMHom 𝑇) ∧ ∈ (𝑆 LMHom 𝑇))) → (((𝑔𝑋) = 𝐹 ∧ (𝑋) = 𝐹) → 𝑔 = ))
3837ralrimivva 3172 . 2 ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) → ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ ∈ (𝑆 LMHom 𝑇)(((𝑔𝑋) = 𝐹 ∧ (𝑋) = 𝐹) → 𝑔 = ))
39 reseq1 5928 . . . 4 (𝑔 = → (𝑔𝑋) = (𝑋))
4039eqeq1d 2731 . . 3 (𝑔 = → ((𝑔𝑋) = 𝐹 ↔ (𝑋) = 𝐹))
4140rmo4 3692 . 2 (∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔𝑋) = 𝐹 ↔ ∀𝑔 ∈ (𝑆 LMHom 𝑇)∀ ∈ (𝑆 LMHom 𝑇)(((𝑔𝑋) = 𝐹 ∧ (𝑋) = 𝐹) → 𝑔 = ))
4238, 41sylibr 234 1 ((𝑋𝐵 ∧ (𝐾𝑋) = 𝐵) → ∃*𝑔 ∈ (𝑆 LMHom 𝑇)(𝑔𝑋) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃*wrmo 3344  cin 3904  wss 3905  dom cdm 5623  cres 5625   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17139  LModclmod 20782  LSubSpclss 20853  LSpanclspn 20893   LMHom clmhm 20942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-subg 19021  df-ghm 19111  df-mgp 20045  df-ur 20086  df-ring 20139  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lmhm 20945
This theorem is referenced by:  frlmup4  21727
  Copyright terms: Public domain W3C validator