Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngogrpo Structured version   Visualization version   GIF version

Theorem rngogrpo 37911
Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ringgrp.1 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngogrpo (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)

Proof of Theorem rngogrpo
StepHypRef Expression
1 ringgrp.1 . . 3 𝐺 = (1st𝑅)
21rngoablo 37909 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)
3 ablogrpo 30483 . 2 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
42, 3syl 17 1 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  1st c1st 7969  GrpOpcgr 30425  AbelOpcablo 30480  RingOpscrngo 37895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-1st 7971  df-2nd 7972  df-ablo 30481  df-rngo 37896
This theorem is referenced by:  rngone0  37912  rngogcl  37913  rngoaass  37915  rngorcan  37918  rngolcan  37919  rngo0cl  37920  rngo0rid  37921  rngo0lid  37922  rngolz  37923  rngorz  37924  rngosn3  37925  rngonegcl  37928  rngoaddneg1  37929  rngoaddneg2  37930  rngosub  37931  rngodm1dm2  37933  rngorn1  37934  rngonegmn1l  37942  rngonegmn1r  37943  rngogrphom  37972  rngohom0  37973  rngohomsub  37974  rngokerinj  37976  keridl  38033  dmncan1  38077
  Copyright terms: Public domain W3C validator