Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrpo | Structured version Visualization version GIF version |
Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringgrp.1 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngogrpo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngoablo 36074 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
3 | ablogrpo 28917 | . 2 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6426 1st c1st 7818 GrpOpcgr 28859 AbelOpcablo 28914 RingOpscrngo 36060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-fv 6434 df-ov 7270 df-1st 7820 df-2nd 7821 df-ablo 28915 df-rngo 36061 |
This theorem is referenced by: rngone0 36077 rngogcl 36078 rngoaass 36080 rngorcan 36083 rngolcan 36084 rngo0cl 36085 rngo0rid 36086 rngo0lid 36087 rngolz 36088 rngorz 36089 rngosn3 36090 rngonegcl 36093 rngoaddneg1 36094 rngoaddneg2 36095 rngosub 36096 rngodm1dm2 36098 rngorn1 36099 rngonegmn1l 36107 rngonegmn1r 36108 rngogrphom 36137 rngohom0 36138 rngohomsub 36139 rngokerinj 36141 keridl 36198 dmncan1 36242 |
Copyright terms: Public domain | W3C validator |