| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrpo | Structured version Visualization version GIF version | ||
| Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringgrp.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| Ref | Expression |
|---|---|
| rngogrpo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngoablo 37902 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
| 3 | ablogrpo 30476 | . 2 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 1st c1st 7966 GrpOpcgr 30418 AbelOpcablo 30473 RingOpscrngo 37888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-1st 7968 df-2nd 7969 df-ablo 30474 df-rngo 37889 |
| This theorem is referenced by: rngone0 37905 rngogcl 37906 rngoaass 37908 rngorcan 37911 rngolcan 37912 rngo0cl 37913 rngo0rid 37914 rngo0lid 37915 rngolz 37916 rngorz 37917 rngosn3 37918 rngonegcl 37921 rngoaddneg1 37922 rngoaddneg2 37923 rngosub 37924 rngodm1dm2 37926 rngorn1 37927 rngonegmn1l 37935 rngonegmn1r 37936 rngogrphom 37965 rngohom0 37966 rngohomsub 37967 rngokerinj 37969 keridl 38026 dmncan1 38070 |
| Copyright terms: Public domain | W3C validator |