| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrpo | Structured version Visualization version GIF version | ||
| Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringgrp.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| Ref | Expression |
|---|---|
| rngogrpo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngoablo 37956 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
| 3 | ablogrpo 30527 | . 2 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 1st c1st 7919 GrpOpcgr 30469 AbelOpcablo 30524 RingOpscrngo 37942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-1st 7921 df-2nd 7922 df-ablo 30525 df-rngo 37943 |
| This theorem is referenced by: rngone0 37959 rngogcl 37960 rngoaass 37962 rngorcan 37965 rngolcan 37966 rngo0cl 37967 rngo0rid 37968 rngo0lid 37969 rngolz 37970 rngorz 37971 rngosn3 37972 rngonegcl 37975 rngoaddneg1 37976 rngoaddneg2 37977 rngosub 37978 rngodm1dm2 37980 rngorn1 37981 rngonegmn1l 37989 rngonegmn1r 37990 rngogrphom 38019 rngohom0 38020 rngohomsub 38021 rngokerinj 38023 keridl 38080 dmncan1 38124 |
| Copyright terms: Public domain | W3C validator |