Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngogrpo Structured version   Visualization version   GIF version

Theorem rngogrpo 37897
Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ringgrp.1 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngogrpo (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)

Proof of Theorem rngogrpo
StepHypRef Expression
1 ringgrp.1 . . 3 𝐺 = (1st𝑅)
21rngoablo 37895 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)
3 ablogrpo 30576 . 2 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
42, 3syl 17 1 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  1st c1st 8011  GrpOpcgr 30518  AbelOpcablo 30573  RingOpscrngo 37881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-1st 8013  df-2nd 8014  df-ablo 30574  df-rngo 37882
This theorem is referenced by:  rngone0  37898  rngogcl  37899  rngoaass  37901  rngorcan  37904  rngolcan  37905  rngo0cl  37906  rngo0rid  37907  rngo0lid  37908  rngolz  37909  rngorz  37910  rngosn3  37911  rngonegcl  37914  rngoaddneg1  37915  rngoaddneg2  37916  rngosub  37917  rngodm1dm2  37919  rngorn1  37920  rngonegmn1l  37928  rngonegmn1r  37929  rngogrphom  37958  rngohom0  37959  rngohomsub  37960  rngokerinj  37962  keridl  38019  dmncan1  38063
  Copyright terms: Public domain W3C validator