![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrpo | Structured version Visualization version GIF version |
Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringgrp.1 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngogrpo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngoablo 37895 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
3 | ablogrpo 30576 | . 2 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 1st c1st 8011 GrpOpcgr 30518 AbelOpcablo 30573 RingOpscrngo 37881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-1st 8013 df-2nd 8014 df-ablo 30574 df-rngo 37882 |
This theorem is referenced by: rngone0 37898 rngogcl 37899 rngoaass 37901 rngorcan 37904 rngolcan 37905 rngo0cl 37906 rngo0rid 37907 rngo0lid 37908 rngolz 37909 rngorz 37910 rngosn3 37911 rngonegcl 37914 rngoaddneg1 37915 rngoaddneg2 37916 rngosub 37917 rngodm1dm2 37919 rngorn1 37920 rngonegmn1l 37928 rngonegmn1r 37929 rngogrphom 37958 rngohom0 37959 rngohomsub 37960 rngokerinj 37962 keridl 38019 dmncan1 38063 |
Copyright terms: Public domain | W3C validator |