Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngogrpo Structured version   Visualization version   GIF version

Theorem rngogrpo 37081
Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ringgrp.1 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngogrpo (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)

Proof of Theorem rngogrpo
StepHypRef Expression
1 ringgrp.1 . . 3 𝐺 = (1st𝑅)
21rngoablo 37079 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)
3 ablogrpo 30067 . 2 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
42, 3syl 17 1 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cfv 6542  1st c1st 7975  GrpOpcgr 30009  AbelOpcablo 30064  RingOpscrngo 37065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-1st 7977  df-2nd 7978  df-ablo 30065  df-rngo 37066
This theorem is referenced by:  rngone0  37082  rngogcl  37083  rngoaass  37085  rngorcan  37088  rngolcan  37089  rngo0cl  37090  rngo0rid  37091  rngo0lid  37092  rngolz  37093  rngorz  37094  rngosn3  37095  rngonegcl  37098  rngoaddneg1  37099  rngoaddneg2  37100  rngosub  37101  rngodm1dm2  37103  rngorn1  37104  rngonegmn1l  37112  rngonegmn1r  37113  rngogrphom  37142  rngohom0  37143  rngohomsub  37144  rngokerinj  37146  keridl  37203  dmncan1  37247
  Copyright terms: Public domain W3C validator