| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrpo | Structured version Visualization version GIF version | ||
| Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringgrp.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| Ref | Expression |
|---|---|
| rngogrpo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngoablo 37932 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
| 3 | ablogrpo 30528 | . 2 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 1st c1st 7986 GrpOpcgr 30470 AbelOpcablo 30525 RingOpscrngo 37918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-1st 7988 df-2nd 7989 df-ablo 30526 df-rngo 37919 |
| This theorem is referenced by: rngone0 37935 rngogcl 37936 rngoaass 37938 rngorcan 37941 rngolcan 37942 rngo0cl 37943 rngo0rid 37944 rngo0lid 37945 rngolz 37946 rngorz 37947 rngosn3 37948 rngonegcl 37951 rngoaddneg1 37952 rngoaddneg2 37953 rngosub 37954 rngodm1dm2 37956 rngorn1 37957 rngonegmn1l 37965 rngonegmn1r 37966 rngogrphom 37995 rngohom0 37996 rngohomsub 37997 rngokerinj 37999 keridl 38056 dmncan1 38100 |
| Copyright terms: Public domain | W3C validator |