Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrpo | Structured version Visualization version GIF version |
Description: A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringgrp.1 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngogrpo | ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngoablo 35993 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) |
3 | ablogrpo 28810 | . 2 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 1st c1st 7802 GrpOpcgr 28752 AbelOpcablo 28807 RingOpscrngo 35979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-1st 7804 df-2nd 7805 df-ablo 28808 df-rngo 35980 |
This theorem is referenced by: rngone0 35996 rngogcl 35997 rngoaass 35999 rngorcan 36002 rngolcan 36003 rngo0cl 36004 rngo0rid 36005 rngo0lid 36006 rngolz 36007 rngorz 36008 rngosn3 36009 rngonegcl 36012 rngoaddneg1 36013 rngoaddneg2 36014 rngosub 36015 rngodm1dm2 36017 rngorn1 36018 rngonegmn1l 36026 rngonegmn1r 36027 rngogrphom 36056 rngohom0 36057 rngohomsub 36058 rngokerinj 36060 keridl 36117 dmncan1 36161 |
Copyright terms: Public domain | W3C validator |