![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo2 | Structured version Visualization version GIF version |
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ringi.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngo2 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringi.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ringi.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | ringi.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | rngoid 36411 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴)) |
5 | oveq12 7370 | . . . . . . 7 ⊢ (((𝑥𝐻𝐴) = 𝐴 ∧ (𝑥𝐻𝐴) = 𝐴) → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴)) | |
6 | 5 | anidms 568 | . . . . . 6 ⊢ ((𝑥𝐻𝐴) = 𝐴 → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴)) |
7 | 6 | eqcomd 2739 | . . . . 5 ⊢ ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
8 | simpll 766 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ RingOps) | |
9 | simpr 486 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
10 | simplr 768 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
11 | 1, 2, 3 | rngodir 36414 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
12 | 8, 9, 9, 10, 11 | syl13anc 1373 | . . . . . 6 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
13 | 12 | eqeq2d 2744 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴) ↔ (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))) |
14 | 7, 13 | syl5ibr 246 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
15 | 14 | adantrd 493 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
16 | 15 | reximdva 3162 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (∃𝑥 ∈ 𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
17 | 4, 16 | mpd 15 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ran crn 5638 ‘cfv 6500 (class class class)co 7361 1st c1st 7923 2nd c2nd 7924 RingOpscrngo 36403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-fv 6508 df-ov 7364 df-1st 7925 df-2nd 7926 df-rngo 36404 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |