![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo2 | Structured version Visualization version GIF version |
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ringi.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngo2 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringi.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ringi.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | ringi.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | rngoid 37260 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴)) |
5 | oveq12 7410 | . . . . . . 7 ⊢ (((𝑥𝐻𝐴) = 𝐴 ∧ (𝑥𝐻𝐴) = 𝐴) → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴)) | |
6 | 5 | anidms 566 | . . . . . 6 ⊢ ((𝑥𝐻𝐴) = 𝐴 → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴)) |
7 | 6 | eqcomd 2730 | . . . . 5 ⊢ ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
8 | simpll 764 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ RingOps) | |
9 | simpr 484 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
10 | simplr 766 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
11 | 1, 2, 3 | rngodir 37263 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
12 | 8, 9, 9, 10, 11 | syl13anc 1369 | . . . . . 6 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
13 | 12 | eqeq2d 2735 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴) ↔ (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))) |
14 | 7, 13 | imbitrrid 245 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
15 | 14 | adantrd 491 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
16 | 15 | reximdva 3160 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (∃𝑥 ∈ 𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
17 | 4, 16 | mpd 15 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 ran crn 5667 ‘cfv 6533 (class class class)co 7401 1st c1st 7966 2nd c2nd 7967 RingOpscrngo 37252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-1st 7968 df-2nd 7969 df-rngo 37253 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |