Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo2 Structured version   Visualization version   GIF version

Theorem rngo2 37946
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngo2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋   𝑥,𝐴   𝑥,𝑅

Proof of Theorem rngo2
StepHypRef Expression
1 ringi.1 . . 3 𝐺 = (1st𝑅)
2 ringi.2 . . 3 𝐻 = (2nd𝑅)
3 ringi.3 . . 3 𝑋 = ran 𝐺
41, 2, 3rngoid 37941 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴))
5 oveq12 7355 . . . . . . 7 (((𝑥𝐻𝐴) = 𝐴 ∧ (𝑥𝐻𝐴) = 𝐴) → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴))
65anidms 566 . . . . . 6 ((𝑥𝐻𝐴) = 𝐴 → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴))
76eqcomd 2737 . . . . 5 ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
8 simpll 766 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝑅 ∈ RingOps)
9 simpr 484 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝑥𝑋)
10 simplr 768 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝐴𝑋)
111, 2, 3rngodir 37944 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑥𝑋𝑥𝑋𝐴𝑋)) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
128, 9, 9, 10, 11syl13anc 1374 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
1312eqeq2d 2742 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴) ↔ (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))))
147, 13imbitrrid 246 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
1514adantrd 491 . . 3 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
1615reximdva 3145 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (∃𝑥𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
174, 16mpd 15 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  ran crn 5617  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  RingOpscrngo 37933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-1st 7921  df-2nd 7922  df-rngo 37934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator