![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo2 | Structured version Visualization version GIF version |
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ringi.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngo2 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringi.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ringi.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | ringi.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | rngoid 37889 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴)) |
5 | oveq12 7440 | . . . . . . 7 ⊢ (((𝑥𝐻𝐴) = 𝐴 ∧ (𝑥𝐻𝐴) = 𝐴) → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴)) | |
6 | 5 | anidms 566 | . . . . . 6 ⊢ ((𝑥𝐻𝐴) = 𝐴 → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴)) |
7 | 6 | eqcomd 2741 | . . . . 5 ⊢ ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
8 | simpll 767 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ RingOps) | |
9 | simpr 484 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
10 | simplr 769 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
11 | 1, 2, 3 | rngodir 37892 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
12 | 8, 9, 9, 10, 11 | syl13anc 1371 | . . . . . 6 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
13 | 12 | eqeq2d 2746 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴) ↔ (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))) |
14 | 7, 13 | imbitrrid 246 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
15 | 14 | adantrd 491 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
16 | 15 | reximdva 3166 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (∃𝑥 ∈ 𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
17 | 4, 16 | mpd 15 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ran crn 5690 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 2nd c2nd 8012 RingOpscrngo 37881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-1st 8013 df-2nd 8014 df-rngo 37882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |