![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo2 | Structured version Visualization version GIF version |
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ringi.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngo2 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringi.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ringi.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | ringi.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | rngoid 37310 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴)) |
5 | oveq12 7423 | . . . . . . 7 ⊢ (((𝑥𝐻𝐴) = 𝐴 ∧ (𝑥𝐻𝐴) = 𝐴) → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴)) | |
6 | 5 | anidms 566 | . . . . . 6 ⊢ ((𝑥𝐻𝐴) = 𝐴 → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴)) |
7 | 6 | eqcomd 2733 | . . . . 5 ⊢ ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
8 | simpll 766 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ RingOps) | |
9 | simpr 484 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
10 | simplr 768 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
11 | 1, 2, 3 | rngodir 37313 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
12 | 8, 9, 9, 10, 11 | syl13anc 1370 | . . . . . 6 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))) |
13 | 12 | eqeq2d 2738 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴) ↔ (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))) |
14 | 7, 13 | imbitrrid 245 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
15 | 14 | adantrd 491 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
16 | 15 | reximdva 3163 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (∃𝑥 ∈ 𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))) |
17 | 4, 16 | mpd 15 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 ran crn 5673 ‘cfv 6542 (class class class)co 7414 1st c1st 7985 2nd c2nd 7986 RingOpscrngo 37302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-1st 7987 df-2nd 7988 df-rngo 37303 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |