Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo2 Structured version   Visualization version   GIF version

Theorem rngo2 37315
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngo2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋   𝑥,𝐴   𝑥,𝑅

Proof of Theorem rngo2
StepHypRef Expression
1 ringi.1 . . 3 𝐺 = (1st𝑅)
2 ringi.2 . . 3 𝐻 = (2nd𝑅)
3 ringi.3 . . 3 𝑋 = ran 𝐺
41, 2, 3rngoid 37310 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴))
5 oveq12 7423 . . . . . . 7 (((𝑥𝐻𝐴) = 𝐴 ∧ (𝑥𝐻𝐴) = 𝐴) → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴))
65anidms 566 . . . . . 6 ((𝑥𝐻𝐴) = 𝐴 → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴))
76eqcomd 2733 . . . . 5 ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
8 simpll 766 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝑅 ∈ RingOps)
9 simpr 484 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝑥𝑋)
10 simplr 768 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝐴𝑋)
111, 2, 3rngodir 37313 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑥𝑋𝑥𝑋𝐴𝑋)) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
128, 9, 9, 10, 11syl13anc 1370 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
1312eqeq2d 2738 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴) ↔ (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))))
147, 13imbitrrid 245 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
1514adantrd 491 . . 3 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
1615reximdva 3163 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (∃𝑥𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
174, 16mpd 15 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wrex 3065  ran crn 5673  cfv 6542  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  RingOpscrngo 37302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-1st 7987  df-2nd 7988  df-rngo 37303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator