Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo2 Structured version   Visualization version   GIF version

Theorem rngo2 37886
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngo2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋   𝑥,𝐴   𝑥,𝑅

Proof of Theorem rngo2
StepHypRef Expression
1 ringi.1 . . 3 𝐺 = (1st𝑅)
2 ringi.2 . . 3 𝐻 = (2nd𝑅)
3 ringi.3 . . 3 𝑋 = ran 𝐺
41, 2, 3rngoid 37881 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴))
5 oveq12 7362 . . . . . . 7 (((𝑥𝐻𝐴) = 𝐴 ∧ (𝑥𝐻𝐴) = 𝐴) → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴))
65anidms 566 . . . . . 6 ((𝑥𝐻𝐴) = 𝐴 → ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)) = (𝐴𝐺𝐴))
76eqcomd 2735 . . . . 5 ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
8 simpll 766 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝑅 ∈ RingOps)
9 simpr 484 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝑥𝑋)
10 simplr 768 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝐴𝑋)
111, 2, 3rngodir 37884 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝑥𝑋𝑥𝑋𝐴𝑋)) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
128, 9, 9, 10, 11syl13anc 1374 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝑥𝐺𝑥)𝐻𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴)))
1312eqeq2d 2740 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴) ↔ (𝐴𝐺𝐴) = ((𝑥𝐻𝐴)𝐺(𝑥𝐻𝐴))))
147, 13imbitrrid 246 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝑥𝐻𝐴) = 𝐴 → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
1514adantrd 491 . . 3 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
1615reximdva 3142 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (∃𝑥𝑋 ((𝑥𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑥) = 𝐴) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)))
174, 16mpd 15 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  ran crn 5624  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  RingOpscrngo 37873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-1st 7931  df-2nd 7932  df-rngo 37874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator