| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rrgsubm.3 | . . 3
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 2 |  | rrgsubm.2 | . . . 4
⊢ 𝑀 = (mulGrp‘𝑅) | 
| 3 | 2 | ringmgp 20237 | . . 3
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) | 
| 4 | 1, 3 | syl 17 | . 2
⊢ (𝜑 → 𝑀 ∈ Mnd) | 
| 5 |  | rrgsubm.1 | . . . 4
⊢ 𝐸 = (RLReg‘𝑅) | 
| 6 |  | eqid 2736 | . . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 7 | 5, 6 | rrgss 20703 | . . 3
⊢ 𝐸 ⊆ (Base‘𝑅) | 
| 8 | 7 | a1i 11 | . 2
⊢ (𝜑 → 𝐸 ⊆ (Base‘𝑅)) | 
| 9 |  | eqid 2736 | . . 3
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 10 | 9, 5, 1 | 1rrg 33287 | . 2
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐸) | 
| 11 |  | eqid 2736 | . . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 12 | 1 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑅 ∈ Ring) | 
| 13 |  | simplr 768 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑥 ∈ 𝐸) | 
| 14 | 7, 13 | sselid 3980 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑥 ∈ (Base‘𝑅)) | 
| 15 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑦 ∈ 𝐸) | 
| 16 | 7, 15 | sselid 3980 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑦 ∈ (Base‘𝑅)) | 
| 17 | 6, 11, 12, 14, 16 | ringcld 20258 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → (𝑥(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) | 
| 18 | 15 | ad2antrr 726 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑦 ∈ 𝐸) | 
| 19 |  | simplr 768 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑧 ∈ (Base‘𝑅)) | 
| 20 | 13 | ad2antrr 726 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑥 ∈ 𝐸) | 
| 21 | 12 | ad2antrr 726 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑅 ∈ Ring) | 
| 22 | 16 | ad2antrr 726 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) | 
| 23 | 6, 11, 21, 22, 19 | ringcld 20258 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ∈ (Base‘𝑅)) | 
| 24 | 14 | ad2antrr 726 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) | 
| 25 | 6, 11, 21, 24, 22, 19 | ringassd 20255 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑧))) | 
| 26 |  | simpr 484 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) | 
| 27 | 25, 26 | eqtr3d 2778 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑧)) = (0g‘𝑅)) | 
| 28 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 29 | 5, 6, 11, 28 | rrgeq0i 20700 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐸 ∧ (𝑦(.r‘𝑅)𝑧) ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑧)) = (0g‘𝑅) → (𝑦(.r‘𝑅)𝑧) = (0g‘𝑅))) | 
| 30 | 29 | imp 406 | . . . . . . . . 9
⊢ (((𝑥 ∈ 𝐸 ∧ (𝑦(.r‘𝑅)𝑧) ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑧)) = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) = (0g‘𝑅)) | 
| 31 | 20, 23, 27, 30 | syl21anc 837 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) = (0g‘𝑅)) | 
| 32 | 5, 6, 11, 28 | rrgeq0i 20700 | . . . . . . . . 9
⊢ ((𝑦 ∈ 𝐸 ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → 𝑧 = (0g‘𝑅))) | 
| 33 | 32 | imp 406 | . . . . . . . 8
⊢ (((𝑦 ∈ 𝐸 ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑧 = (0g‘𝑅)) | 
| 34 | 18, 19, 31, 33 | syl21anc 837 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑧 = (0g‘𝑅)) | 
| 35 | 34 | ex 412 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) → (((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅) → 𝑧 = (0g‘𝑅))) | 
| 36 | 35 | ralrimiva 3145 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → ∀𝑧 ∈ (Base‘𝑅)(((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅) → 𝑧 = (0g‘𝑅))) | 
| 37 | 5, 6, 11, 28 | isrrg 20699 | . . . . 5
⊢ ((𝑥(.r‘𝑅)𝑦) ∈ 𝐸 ↔ ((𝑥(.r‘𝑅)𝑦) ∈ (Base‘𝑅) ∧ ∀𝑧 ∈ (Base‘𝑅)(((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅) → 𝑧 = (0g‘𝑅)))) | 
| 38 | 17, 36, 37 | sylanbrc 583 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐸) | 
| 39 | 38 | anasss 466 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐸) | 
| 40 | 39 | ralrimivva 3201 | . 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 (𝑥(.r‘𝑅)𝑦) ∈ 𝐸) | 
| 41 | 2, 6 | mgpbas 20143 | . . . 4
⊢
(Base‘𝑅) =
(Base‘𝑀) | 
| 42 | 2, 9 | ringidval 20181 | . . . 4
⊢
(1r‘𝑅) = (0g‘𝑀) | 
| 43 | 2, 11 | mgpplusg 20142 | . . . 4
⊢
(.r‘𝑅) = (+g‘𝑀) | 
| 44 | 41, 42, 43 | issubm 18817 | . . 3
⊢ (𝑀 ∈ Mnd → (𝐸 ∈ (SubMnd‘𝑀) ↔ (𝐸 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐸 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 (𝑥(.r‘𝑅)𝑦) ∈ 𝐸))) | 
| 45 | 44 | biimpar 477 | . 2
⊢ ((𝑀 ∈ Mnd ∧ (𝐸 ⊆ (Base‘𝑅) ∧
(1r‘𝑅)
∈ 𝐸 ∧
∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 (𝑥(.r‘𝑅)𝑦) ∈ 𝐸)) → 𝐸 ∈ (SubMnd‘𝑀)) | 
| 46 | 4, 8, 10, 40, 45 | syl13anc 1373 | 1
⊢ (𝜑 → 𝐸 ∈ (SubMnd‘𝑀)) |