Step | Hyp | Ref
| Expression |
1 | | rrgsubm.3 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | rrgsubm.2 |
. . . 4
⊢ 𝑀 = (mulGrp‘𝑅) |
3 | 2 | ringmgp 20191 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
4 | 1, 3 | syl 17 |
. 2
⊢ (𝜑 → 𝑀 ∈ Mnd) |
5 | | rrgsubm.1 |
. . . 4
⊢ 𝐸 = (RLReg‘𝑅) |
6 | | eqid 2725 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
7 | 5, 6 | rrgss 21256 |
. . 3
⊢ 𝐸 ⊆ (Base‘𝑅) |
8 | 7 | a1i 11 |
. 2
⊢ (𝜑 → 𝐸 ⊆ (Base‘𝑅)) |
9 | | eqid 2725 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
10 | 9, 5, 1 | 1rrg 33069 |
. 2
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐸) |
11 | | eqid 2725 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
12 | 1 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑅 ∈ Ring) |
13 | | simplr 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑥 ∈ 𝐸) |
14 | 7, 13 | sselid 3974 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑥 ∈ (Base‘𝑅)) |
15 | | simpr 483 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑦 ∈ 𝐸) |
16 | 7, 15 | sselid 3974 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → 𝑦 ∈ (Base‘𝑅)) |
17 | 6, 11, 12, 14, 16 | ringcld 20211 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → (𝑥(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) |
18 | 15 | ad2antrr 724 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑦 ∈ 𝐸) |
19 | | simplr 767 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑧 ∈ (Base‘𝑅)) |
20 | 13 | ad2antrr 724 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑥 ∈ 𝐸) |
21 | 12 | ad2antrr 724 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑅 ∈ Ring) |
22 | 16 | ad2antrr 724 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) |
23 | 6, 11, 21, 22, 19 | ringcld 20211 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) ∈ (Base‘𝑅)) |
24 | 14 | ad2antrr 724 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
25 | 6, 11, 21, 24, 22, 19 | ringassd 20209 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑧))) |
26 | | simpr 483 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) |
27 | 25, 26 | eqtr3d 2767 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑧)) = (0g‘𝑅)) |
28 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
29 | 5, 6, 11, 28 | rrgeq0i 21253 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐸 ∧ (𝑦(.r‘𝑅)𝑧) ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑧)) = (0g‘𝑅) → (𝑦(.r‘𝑅)𝑧) = (0g‘𝑅))) |
30 | 29 | imp 405 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐸 ∧ (𝑦(.r‘𝑅)𝑧) ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑧)) = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) = (0g‘𝑅)) |
31 | 20, 23, 27, 30 | syl21anc 836 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → (𝑦(.r‘𝑅)𝑧) = (0g‘𝑅)) |
32 | 5, 6, 11, 28 | rrgeq0i 21253 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐸 ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑦(.r‘𝑅)𝑧) = (0g‘𝑅) → 𝑧 = (0g‘𝑅))) |
33 | 32 | imp 405 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝐸 ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑦(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑧 = (0g‘𝑅)) |
34 | 18, 19, 31, 33 | syl21anc 836 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅)) → 𝑧 = (0g‘𝑅)) |
35 | 34 | ex 411 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 ∈ (Base‘𝑅)) → (((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅) → 𝑧 = (0g‘𝑅))) |
36 | 35 | ralrimiva 3135 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → ∀𝑧 ∈ (Base‘𝑅)(((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅) → 𝑧 = (0g‘𝑅))) |
37 | 5, 6, 11, 28 | isrrg 21252 |
. . . . 5
⊢ ((𝑥(.r‘𝑅)𝑦) ∈ 𝐸 ↔ ((𝑥(.r‘𝑅)𝑦) ∈ (Base‘𝑅) ∧ ∀𝑧 ∈ (Base‘𝑅)(((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑧) = (0g‘𝑅) → 𝑧 = (0g‘𝑅)))) |
38 | 17, 36, 37 | sylanbrc 581 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐸) ∧ 𝑦 ∈ 𝐸) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐸) |
39 | 38 | anasss 465 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐸) |
40 | 39 | ralrimivva 3190 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 (𝑥(.r‘𝑅)𝑦) ∈ 𝐸) |
41 | 2, 6 | mgpbas 20092 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑀) |
42 | 2, 9 | ringidval 20135 |
. . . 4
⊢
(1r‘𝑅) = (0g‘𝑀) |
43 | 2, 11 | mgpplusg 20090 |
. . . 4
⊢
(.r‘𝑅) = (+g‘𝑀) |
44 | 41, 42, 43 | issubm 18763 |
. . 3
⊢ (𝑀 ∈ Mnd → (𝐸 ∈ (SubMnd‘𝑀) ↔ (𝐸 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐸 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 (𝑥(.r‘𝑅)𝑦) ∈ 𝐸))) |
45 | 44 | biimpar 476 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ (𝐸 ⊆ (Base‘𝑅) ∧
(1r‘𝑅)
∈ 𝐸 ∧
∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 (𝑥(.r‘𝑅)𝑦) ∈ 𝐸)) → 𝐸 ∈ (SubMnd‘𝑀)) |
46 | 4, 8, 10, 40, 45 | syl13anc 1369 |
1
⊢ (𝜑 → 𝐸 ∈ (SubMnd‘𝑀)) |