Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgeq0 Structured version   Visualization version   GIF version

Theorem rrgeq0 20039
 Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgeq0 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))

Proof of Theorem rrgeq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4 𝐸 = (RLReg‘𝑅)
2 rrgval.b . . . 4 𝐵 = (Base‘𝑅)
3 rrgval.t . . . 4 · = (.r𝑅)
4 rrgval.z . . . 4 0 = (0g𝑅)
51, 2, 3, 4rrgeq0i 20038 . . 3 ((𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
653adant1 1126 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
7 simp1 1132 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑅 ∈ Ring)
81, 2, 3, 4rrgval 20036 . . . . . 6 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
98ssrab3 4036 . . . . 5 𝐸𝐵
10 simp2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑋𝐸)
119, 10sseldi 3944 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑋𝐵)
122, 3, 4ringrz 19317 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
137, 11, 12syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → (𝑋 · 0 ) = 0 )
14 oveq2 7141 . . . 4 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
1514eqeq1d 2822 . . 3 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
1613, 15syl5ibrcom 249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
176, 16impbid 214 1 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114  ∀wral 3125  ‘cfv 6331  (class class class)co 7133  Basecbs 16462  .rcmulr 16545  0gc0g 16692  Ringcrg 19276  RLRegcrlreg 20028 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-mgp 19219  df-ring 19278  df-rlreg 20032 This theorem is referenced by:  rrgsupp  20040
 Copyright terms: Public domain W3C validator