MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgeq0 Structured version   Visualization version   GIF version

Theorem rrgeq0 20700
Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgeq0 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))

Proof of Theorem rrgeq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4 𝐸 = (RLReg‘𝑅)
2 rrgval.b . . . 4 𝐵 = (Base‘𝑅)
3 rrgval.t . . . 4 · = (.r𝑅)
4 rrgval.z . . . 4 0 = (0g𝑅)
51, 2, 3, 4rrgeq0i 20699 . . 3 ((𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
653adant1 1131 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
7 simp1 1137 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑅 ∈ Ring)
81, 2, 3, 4rrgval 20697 . . . . . 6 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
98ssrab3 4082 . . . . 5 𝐸𝐵
10 simp2 1138 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑋𝐸)
119, 10sselid 3981 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑋𝐵)
122, 3, 4ringrz 20291 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
137, 11, 12syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → (𝑋 · 0 ) = 0 )
14 oveq2 7439 . . . 4 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
1514eqeq1d 2739 . . 3 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
1613, 15syl5ibrcom 247 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
176, 16impbid 212 1 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  0gc0g 17484  Ringcrg 20230  RLRegcrlreg 20691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-rlreg 20694
This theorem is referenced by:  rrgsupp  20701  rrgnz  20704  r1pid2OLD  33629
  Copyright terms: Public domain W3C validator