![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrgeq0 | Structured version Visualization version GIF version |
Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
rrgval.e | ⊢ 𝐸 = (RLReg‘𝑅) |
rrgval.b | ⊢ 𝐵 = (Base‘𝑅) |
rrgval.t | ⊢ · = (.r‘𝑅) |
rrgval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
rrgeq0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrgval.e | . . . 4 ⊢ 𝐸 = (RLReg‘𝑅) | |
2 | rrgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rrgval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
4 | rrgval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | rrgeq0i 19651 | . . 3 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
6 | 5 | 3adant1 1166 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
7 | simp1 1172 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) | |
8 | 1, 2, 3, 4 | rrgval 19649 | . . . . . 6 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} |
9 | ssrab2 3913 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} ⊆ 𝐵 | |
10 | 8, 9 | eqsstri 3861 | . . . . 5 ⊢ 𝐸 ⊆ 𝐵 |
11 | simp2 1173 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐸) | |
12 | 10, 11 | sseldi 3826 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
13 | 2, 3, 4 | ringrz 18943 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
14 | 7, 12, 13 | syl2anc 581 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
15 | oveq2 6914 | . . . 4 ⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) | |
16 | 15 | eqeq1d 2828 | . . 3 ⊢ (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 )) |
17 | 14, 16 | syl5ibrcom 239 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
18 | 6, 17 | impbid 204 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∀wral 3118 {crab 3122 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 .rcmulr 16307 0gc0g 16454 Ringcrg 18902 RLRegcrlreg 19641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-plusg 16319 df-0g 16456 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-grp 17780 df-mgp 18845 df-ring 18904 df-rlreg 19645 |
This theorem is referenced by: rrgsupp 19653 |
Copyright terms: Public domain | W3C validator |