MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul2 Structured version   Visualization version   GIF version

Theorem deg1mul2 24715
Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
deg1mul2.d 𝐷 = ( deg1𝑅)
deg1mul2.p 𝑃 = (Poly1𝑅)
deg1mul2.e 𝐸 = (RLReg‘𝑅)
deg1mul2.b 𝐵 = (Base‘𝑃)
deg1mul2.t · = (.r𝑃)
deg1mul2.z 0 = (0g𝑃)
deg1mul2.r (𝜑𝑅 ∈ Ring)
deg1mul2.fb (𝜑𝐹𝐵)
deg1mul2.fz (𝜑𝐹0 )
deg1mul2.fc (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝐸)
deg1mul2.gb (𝜑𝐺𝐵)
deg1mul2.gz (𝜑𝐺0 )
Assertion
Ref Expression
deg1mul2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷𝐹) + (𝐷𝐺)))

Proof of Theorem deg1mul2
StepHypRef Expression
1 deg1mul2.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 deg1mul2.p . . . . . 6 𝑃 = (Poly1𝑅)
32ply1ring 20877 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
5 deg1mul2.fb . . . 4 (𝜑𝐹𝐵)
6 deg1mul2.gb . . . 4 (𝜑𝐺𝐵)
7 deg1mul2.b . . . . 5 𝐵 = (Base‘𝑃)
8 deg1mul2.t . . . . 5 · = (.r𝑃)
97, 8ringcl 19307 . . . 4 ((𝑃 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
104, 5, 6, 9syl3anc 1368 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
11 deg1mul2.d . . . 4 𝐷 = ( deg1𝑅)
1211, 2, 7deg1xrcl 24683 . . 3 ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*)
1310, 12syl 17 . 2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*)
14 deg1mul2.fz . . . . . 6 (𝜑𝐹0 )
15 deg1mul2.z . . . . . . 7 0 = (0g𝑃)
1611, 2, 15, 7deg1nn0cl 24689 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
171, 5, 14, 16syl3anc 1368 . . . . 5 (𝜑 → (𝐷𝐹) ∈ ℕ0)
18 deg1mul2.gz . . . . . 6 (𝜑𝐺0 )
1911, 2, 15, 7deg1nn0cl 24689 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
201, 6, 18, 19syl3anc 1368 . . . . 5 (𝜑 → (𝐷𝐺) ∈ ℕ0)
2117, 20nn0addcld 11947 . . . 4 (𝜑 → ((𝐷𝐹) + (𝐷𝐺)) ∈ ℕ0)
2221nn0red 11944 . . 3 (𝜑 → ((𝐷𝐹) + (𝐷𝐺)) ∈ ℝ)
2322rexrd 10680 . 2 (𝜑 → ((𝐷𝐹) + (𝐷𝐺)) ∈ ℝ*)
2417nn0red 11944 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℝ)
2524leidd 11195 . . 3 (𝜑 → (𝐷𝐹) ≤ (𝐷𝐹))
2620nn0red 11944 . . . 4 (𝜑 → (𝐷𝐺) ∈ ℝ)
2726leidd 11195 . . 3 (𝜑 → (𝐷𝐺) ≤ (𝐷𝐺))
282, 11, 1, 7, 8, 5, 6, 17, 20, 25, 27deg1mulle2 24710 . 2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷𝐹) + (𝐷𝐺)))
29 eqid 2798 . . . . 5 (.r𝑅) = (.r𝑅)
302, 8, 29, 7, 11, 15, 1, 5, 14, 6, 18coe1mul4 24701 . . . 4 (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) = (((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))))
31 eqid 2798 . . . . . . 7 (0g𝑅) = (0g𝑅)
32 eqid 2798 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
3311, 2, 15, 7, 31, 32deg1ldg 24693 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → ((coe1𝐺)‘(𝐷𝐺)) ≠ (0g𝑅))
341, 6, 18, 33syl3anc 1368 . . . . 5 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ≠ (0g𝑅))
35 deg1mul2.fc . . . . . . 7 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝐸)
36 eqid 2798 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
3732, 7, 2, 36coe1f 20840 . . . . . . . . 9 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
386, 37syl 17 . . . . . . . 8 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
3938, 20ffvelrnd 6829 . . . . . . 7 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Base‘𝑅))
40 deg1mul2.e . . . . . . . 8 𝐸 = (RLReg‘𝑅)
4140, 36, 29, 31rrgeq0i 20055 . . . . . . 7 ((((coe1𝐹)‘(𝐷𝐹)) ∈ 𝐸 ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ (Base‘𝑅)) → ((((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))) = (0g𝑅) → ((coe1𝐺)‘(𝐷𝐺)) = (0g𝑅)))
4235, 39, 41syl2anc 587 . . . . . 6 (𝜑 → ((((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))) = (0g𝑅) → ((coe1𝐺)‘(𝐷𝐺)) = (0g𝑅)))
4342necon3d 3008 . . . . 5 (𝜑 → (((coe1𝐺)‘(𝐷𝐺)) ≠ (0g𝑅) → (((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))) ≠ (0g𝑅)))
4434, 43mpd 15 . . . 4 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))) ≠ (0g𝑅))
4530, 44eqnetrd 3054 . . 3 (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) ≠ (0g𝑅))
46 eqid 2798 . . . 4 (coe1‘(𝐹 · 𝐺)) = (coe1‘(𝐹 · 𝐺))
4711, 2, 7, 31, 46deg1ge 24699 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ ((𝐷𝐹) + (𝐷𝐺)) ∈ ℕ0 ∧ ((coe1‘(𝐹 · 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) ≠ (0g𝑅)) → ((𝐷𝐹) + (𝐷𝐺)) ≤ (𝐷‘(𝐹 · 𝐺)))
4810, 21, 45, 47syl3anc 1368 . 2 (𝜑 → ((𝐷𝐹) + (𝐷𝐺)) ≤ (𝐷‘(𝐹 · 𝐺)))
4913, 23, 28, 48xrletrid 12536 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷𝐹) + (𝐷𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135   + caddc 10529  *cxr 10663  cle 10665  0cn0 11885  Basecbs 16475  .rcmulr 16558  0gc0g 16705  Ringcrg 19290  RLRegcrlreg 20045  Poly1cpl1 20806  coe1cco1 20807   deg1 cdg1 24655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-rlreg 20049  df-cnfld 20092  df-psr 20594  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-ply1 20811  df-coe1 20812  df-mdeg 24656  df-deg1 24657
This theorem is referenced by:  ply1domn  24724  ply1divmo  24736  fta1glem1  24766  mon1psubm  40150  deg1mhm  40151
  Copyright terms: Public domain W3C validator