| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1mul2 | Structured version Visualization version GIF version | ||
| Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1mul2.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1mul2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1mul2.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| deg1mul2.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1mul2.t | ⊢ · = (.r‘𝑃) |
| deg1mul2.z | ⊢ 0 = (0g‘𝑃) |
| deg1mul2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| deg1mul2.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| deg1mul2.fz | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
| deg1mul2.fc | ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) |
| deg1mul2.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| deg1mul2.gz | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
| Ref | Expression |
|---|---|
| deg1mul2 | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1mul2.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | deg1mul2.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1ring 22148 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 5 | deg1mul2.fb | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 6 | deg1mul2.gb | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 7 | deg1mul2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 8 | deg1mul2.t | . . . . 5 ⊢ · = (.r‘𝑃) | |
| 9 | 7, 8 | ringcl 20153 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
| 10 | 4, 5, 6, 9 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
| 11 | deg1mul2.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 12 | 11, 2, 7 | deg1xrcl 26003 | . . 3 ⊢ ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
| 14 | deg1mul2.fz | . . . . . 6 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
| 15 | deg1mul2.z | . . . . . . 7 ⊢ 0 = (0g‘𝑃) | |
| 16 | 11, 2, 15, 7 | deg1nn0cl 26009 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
| 17 | 1, 5, 14, 16 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
| 18 | deg1mul2.gz | . . . . . 6 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
| 19 | 11, 2, 15, 7 | deg1nn0cl 26009 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → (𝐷‘𝐺) ∈ ℕ0) |
| 20 | 1, 6, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℕ0) |
| 21 | 17, 20 | nn0addcld 12467 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0) |
| 22 | 21 | nn0red 12464 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ) |
| 23 | 22 | rexrd 11184 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ*) |
| 24 | 17 | nn0red 12464 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ) |
| 25 | 24 | leidd 11704 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
| 26 | 20 | nn0red 12464 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ) |
| 27 | 26 | leidd 11704 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ≤ (𝐷‘𝐺)) |
| 28 | 2, 11, 1, 7, 8, 5, 6, 17, 20, 25, 27 | deg1mulle2 26030 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷‘𝐹) + (𝐷‘𝐺))) |
| 29 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 30 | 2, 8, 29, 7, 11, 15, 1, 5, 14, 6, 18 | coe1mul4 26021 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺)))) |
| 31 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 32 | eqid 2729 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
| 33 | 11, 2, 15, 7, 31, 32 | deg1ldg 26013 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
| 34 | 1, 6, 18, 33 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
| 35 | deg1mul2.fc | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) | |
| 36 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 37 | 32, 7, 2, 36 | coe1f 22112 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 38 | 6, 37 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 39 | 38, 20 | ffvelcdmd 7023 | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) |
| 40 | deg1mul2.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 41 | 40, 36, 29, 31 | rrgeq0i 20602 | . . . . . . 7 ⊢ ((((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸 ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
| 42 | 35, 39, 41 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
| 43 | 42 | necon3d 2946 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅) → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅))) |
| 44 | 34, 43 | mpd 15 | . . . 4 ⊢ (𝜑 → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅)) |
| 45 | 30, 44 | eqnetrd 2992 | . . 3 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) |
| 46 | eqid 2729 | . . . 4 ⊢ (coe1‘(𝐹 · 𝐺)) = (coe1‘(𝐹 · 𝐺)) | |
| 47 | 11, 2, 7, 31, 46 | deg1ge 26019 | . . 3 ⊢ (((𝐹 · 𝐺) ∈ 𝐵 ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0 ∧ ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
| 48 | 10, 21, 45, 47 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
| 49 | 13, 23, 28, 48 | xrletrid 13075 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 + caddc 11031 ℝ*cxr 11167 ≤ cle 11169 ℕ0cn0 12402 Basecbs 17138 .rcmulr 17180 0gc0g 17361 Ringcrg 20136 RLRegcrlreg 20594 Poly1cpl1 22077 coe1cco1 22078 deg1cdg1 25975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-subrng 20449 df-subrg 20473 df-rlreg 20597 df-cnfld 21280 df-psr 21834 df-mpl 21836 df-opsr 21838 df-psr1 22080 df-ply1 22082 df-coe1 22083 df-mdeg 25976 df-deg1 25977 |
| This theorem is referenced by: deg1mul 26036 ply1domn 26045 ply1divmo 26057 fta1glem1 26089 ply1unit 33523 m1pmeq 33531 minplyirredlem 33679 mon1psubm 43175 deg1mhm 43176 |
| Copyright terms: Public domain | W3C validator |