Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1mul2 | Structured version Visualization version GIF version |
Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1mul2.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1mul2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1mul2.e | ⊢ 𝐸 = (RLReg‘𝑅) |
deg1mul2.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1mul2.t | ⊢ · = (.r‘𝑃) |
deg1mul2.z | ⊢ 0 = (0g‘𝑃) |
deg1mul2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1mul2.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1mul2.fz | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
deg1mul2.fc | ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) |
deg1mul2.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1mul2.gz | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
Ref | Expression |
---|---|
deg1mul2 | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul2.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | deg1mul2.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1ring 21419 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
5 | deg1mul2.fb | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
6 | deg1mul2.gb | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
7 | deg1mul2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
8 | deg1mul2.t | . . . . 5 ⊢ · = (.r‘𝑃) | |
9 | 7, 8 | ringcl 19800 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
10 | 4, 5, 6, 9 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
11 | deg1mul2.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
12 | 11, 2, 7 | deg1xrcl 25247 | . . 3 ⊢ ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
14 | deg1mul2.fz | . . . . . 6 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
15 | deg1mul2.z | . . . . . . 7 ⊢ 0 = (0g‘𝑃) | |
16 | 11, 2, 15, 7 | deg1nn0cl 25253 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
17 | 1, 5, 14, 16 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
18 | deg1mul2.gz | . . . . . 6 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
19 | 11, 2, 15, 7 | deg1nn0cl 25253 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → (𝐷‘𝐺) ∈ ℕ0) |
20 | 1, 6, 18, 19 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℕ0) |
21 | 17, 20 | nn0addcld 12297 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0) |
22 | 21 | nn0red 12294 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ) |
23 | 22 | rexrd 11025 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ*) |
24 | 17 | nn0red 12294 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ) |
25 | 24 | leidd 11541 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
26 | 20 | nn0red 12294 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ) |
27 | 26 | leidd 11541 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ≤ (𝐷‘𝐺)) |
28 | 2, 11, 1, 7, 8, 5, 6, 17, 20, 25, 27 | deg1mulle2 25274 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷‘𝐹) + (𝐷‘𝐺))) |
29 | eqid 2738 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
30 | 2, 8, 29, 7, 11, 15, 1, 5, 14, 6, 18 | coe1mul4 25265 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺)))) |
31 | eqid 2738 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
32 | eqid 2738 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
33 | 11, 2, 15, 7, 31, 32 | deg1ldg 25257 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
34 | 1, 6, 18, 33 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
35 | deg1mul2.fc | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) | |
36 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
37 | 32, 7, 2, 36 | coe1f 21382 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
38 | 6, 37 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
39 | 38, 20 | ffvelrnd 6962 | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) |
40 | deg1mul2.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
41 | 40, 36, 29, 31 | rrgeq0i 20560 | . . . . . . 7 ⊢ ((((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸 ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
42 | 35, 39, 41 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
43 | 42 | necon3d 2964 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅) → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅))) |
44 | 34, 43 | mpd 15 | . . . 4 ⊢ (𝜑 → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅)) |
45 | 30, 44 | eqnetrd 3011 | . . 3 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) |
46 | eqid 2738 | . . . 4 ⊢ (coe1‘(𝐹 · 𝐺)) = (coe1‘(𝐹 · 𝐺)) | |
47 | 11, 2, 7, 31, 46 | deg1ge 25263 | . . 3 ⊢ (((𝐹 · 𝐺) ∈ 𝐵 ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0 ∧ ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
48 | 10, 21, 45, 47 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
49 | 13, 23, 28, 48 | xrletrid 12889 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 + caddc 10874 ℝ*cxr 11008 ≤ cle 11010 ℕ0cn0 12233 Basecbs 16912 .rcmulr 16963 0gc0g 17150 Ringcrg 19783 RLRegcrlreg 20550 Poly1cpl1 21348 coe1cco1 21349 deg1 cdg1 25216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-subrg 20022 df-rlreg 20554 df-cnfld 20598 df-psr 21112 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-ply1 21353 df-coe1 21354 df-mdeg 25217 df-deg1 25218 |
This theorem is referenced by: ply1domn 25288 ply1divmo 25300 fta1glem1 25330 mon1psubm 41031 deg1mhm 41032 |
Copyright terms: Public domain | W3C validator |