Step | Hyp | Ref
| Expression |
1 | | deg1mul2.r |
. . . . 5
β’ (π β π
β Ring) |
2 | | deg1mul2.p |
. . . . . 6
β’ π = (Poly1βπ
) |
3 | 2 | ply1ring 21761 |
. . . . 5
β’ (π
β Ring β π β Ring) |
4 | 1, 3 | syl 17 |
. . . 4
β’ (π β π β Ring) |
5 | | deg1mul2.fb |
. . . 4
β’ (π β πΉ β π΅) |
6 | | deg1mul2.gb |
. . . 4
β’ (π β πΊ β π΅) |
7 | | deg1mul2.b |
. . . . 5
β’ π΅ = (Baseβπ) |
8 | | deg1mul2.t |
. . . . 5
β’ Β· =
(.rβπ) |
9 | 7, 8 | ringcl 20066 |
. . . 4
β’ ((π β Ring β§ πΉ β π΅ β§ πΊ β π΅) β (πΉ Β· πΊ) β π΅) |
10 | 4, 5, 6, 9 | syl3anc 1371 |
. . 3
β’ (π β (πΉ Β· πΊ) β π΅) |
11 | | deg1mul2.d |
. . . 4
β’ π· = ( deg1
βπ
) |
12 | 11, 2, 7 | deg1xrcl 25591 |
. . 3
β’ ((πΉ Β· πΊ) β π΅ β (π·β(πΉ Β· πΊ)) β
β*) |
13 | 10, 12 | syl 17 |
. 2
β’ (π β (π·β(πΉ Β· πΊ)) β
β*) |
14 | | deg1mul2.fz |
. . . . . 6
β’ (π β πΉ β 0 ) |
15 | | deg1mul2.z |
. . . . . . 7
β’ 0 =
(0gβπ) |
16 | 11, 2, 15, 7 | deg1nn0cl 25597 |
. . . . . 6
β’ ((π
β Ring β§ πΉ β π΅ β§ πΉ β 0 ) β (π·βπΉ) β
β0) |
17 | 1, 5, 14, 16 | syl3anc 1371 |
. . . . 5
β’ (π β (π·βπΉ) β
β0) |
18 | | deg1mul2.gz |
. . . . . 6
β’ (π β πΊ β 0 ) |
19 | 11, 2, 15, 7 | deg1nn0cl 25597 |
. . . . . 6
β’ ((π
β Ring β§ πΊ β π΅ β§ πΊ β 0 ) β (π·βπΊ) β
β0) |
20 | 1, 6, 18, 19 | syl3anc 1371 |
. . . . 5
β’ (π β (π·βπΊ) β
β0) |
21 | 17, 20 | nn0addcld 12532 |
. . . 4
β’ (π β ((π·βπΉ) + (π·βπΊ)) β
β0) |
22 | 21 | nn0red 12529 |
. . 3
β’ (π β ((π·βπΉ) + (π·βπΊ)) β β) |
23 | 22 | rexrd 11260 |
. 2
β’ (π β ((π·βπΉ) + (π·βπΊ)) β
β*) |
24 | 17 | nn0red 12529 |
. . . 4
β’ (π β (π·βπΉ) β β) |
25 | 24 | leidd 11776 |
. . 3
β’ (π β (π·βπΉ) β€ (π·βπΉ)) |
26 | 20 | nn0red 12529 |
. . . 4
β’ (π β (π·βπΊ) β β) |
27 | 26 | leidd 11776 |
. . 3
β’ (π β (π·βπΊ) β€ (π·βπΊ)) |
28 | 2, 11, 1, 7, 8, 5, 6, 17, 20, 25, 27 | deg1mulle2 25618 |
. 2
β’ (π β (π·β(πΉ Β· πΊ)) β€ ((π·βπΉ) + (π·βπΊ))) |
29 | | eqid 2732 |
. . . . 5
β’
(.rβπ
) = (.rβπ
) |
30 | 2, 8, 29, 7, 11, 15, 1, 5, 14, 6, 18 | coe1mul4 25609 |
. . . 4
β’ (π β
((coe1β(πΉ
Β·
πΊ))β((π·βπΉ) + (π·βπΊ))) = (((coe1βπΉ)β(π·βπΉ))(.rβπ
)((coe1βπΊ)β(π·βπΊ)))) |
31 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ
) = (0gβπ
) |
32 | | eqid 2732 |
. . . . . . 7
β’
(coe1βπΊ) = (coe1βπΊ) |
33 | 11, 2, 15, 7, 31, 32 | deg1ldg 25601 |
. . . . . 6
β’ ((π
β Ring β§ πΊ β π΅ β§ πΊ β 0 ) β
((coe1βπΊ)β(π·βπΊ)) β (0gβπ
)) |
34 | 1, 6, 18, 33 | syl3anc 1371 |
. . . . 5
β’ (π β
((coe1βπΊ)β(π·βπΊ)) β (0gβπ
)) |
35 | | deg1mul2.fc |
. . . . . . 7
β’ (π β
((coe1βπΉ)β(π·βπΉ)) β πΈ) |
36 | | eqid 2732 |
. . . . . . . . . 10
β’
(Baseβπ
) =
(Baseβπ
) |
37 | 32, 7, 2, 36 | coe1f 21726 |
. . . . . . . . 9
β’ (πΊ β π΅ β (coe1βπΊ):β0βΆ(Baseβπ
)) |
38 | 6, 37 | syl 17 |
. . . . . . . 8
β’ (π β
(coe1βπΊ):β0βΆ(Baseβπ
)) |
39 | 38, 20 | ffvelcdmd 7084 |
. . . . . . 7
β’ (π β
((coe1βπΊ)β(π·βπΊ)) β (Baseβπ
)) |
40 | | deg1mul2.e |
. . . . . . . 8
β’ πΈ = (RLRegβπ
) |
41 | 40, 36, 29, 31 | rrgeq0i 20897 |
. . . . . . 7
β’
((((coe1βπΉ)β(π·βπΉ)) β πΈ β§ ((coe1βπΊ)β(π·βπΊ)) β (Baseβπ
)) β ((((coe1βπΉ)β(π·βπΉ))(.rβπ
)((coe1βπΊ)β(π·βπΊ))) = (0gβπ
) β ((coe1βπΊ)β(π·βπΊ)) = (0gβπ
))) |
42 | 35, 39, 41 | syl2anc 584 |
. . . . . 6
β’ (π β
((((coe1βπΉ)β(π·βπΉ))(.rβπ
)((coe1βπΊ)β(π·βπΊ))) = (0gβπ
) β ((coe1βπΊ)β(π·βπΊ)) = (0gβπ
))) |
43 | 42 | necon3d 2961 |
. . . . 5
β’ (π β
(((coe1βπΊ)β(π·βπΊ)) β (0gβπ
) β
(((coe1βπΉ)β(π·βπΉ))(.rβπ
)((coe1βπΊ)β(π·βπΊ))) β (0gβπ
))) |
44 | 34, 43 | mpd 15 |
. . . 4
β’ (π β
(((coe1βπΉ)β(π·βπΉ))(.rβπ
)((coe1βπΊ)β(π·βπΊ))) β (0gβπ
)) |
45 | 30, 44 | eqnetrd 3008 |
. . 3
β’ (π β
((coe1β(πΉ
Β·
πΊ))β((π·βπΉ) + (π·βπΊ))) β (0gβπ
)) |
46 | | eqid 2732 |
. . . 4
β’
(coe1β(πΉ Β· πΊ)) = (coe1β(πΉ Β· πΊ)) |
47 | 11, 2, 7, 31, 46 | deg1ge 25607 |
. . 3
β’ (((πΉ Β· πΊ) β π΅ β§ ((π·βπΉ) + (π·βπΊ)) β β0 β§
((coe1β(πΉ
Β·
πΊ))β((π·βπΉ) + (π·βπΊ))) β (0gβπ
)) β ((π·βπΉ) + (π·βπΊ)) β€ (π·β(πΉ Β· πΊ))) |
48 | 10, 21, 45, 47 | syl3anc 1371 |
. 2
β’ (π β ((π·βπΉ) + (π·βπΊ)) β€ (π·β(πΉ Β· πΊ))) |
49 | 13, 23, 28, 48 | xrletrid 13130 |
1
β’ (π β (π·β(πΉ Β· πΊ)) = ((π·βπΉ) + (π·βπΊ))) |