![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1mul2 | Structured version Visualization version GIF version |
Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1mul2.d | ⊢ 𝐷 = (deg1‘𝑅) |
deg1mul2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1mul2.e | ⊢ 𝐸 = (RLReg‘𝑅) |
deg1mul2.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1mul2.t | ⊢ · = (.r‘𝑃) |
deg1mul2.z | ⊢ 0 = (0g‘𝑃) |
deg1mul2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1mul2.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1mul2.fz | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
deg1mul2.fc | ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) |
deg1mul2.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1mul2.gz | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
Ref | Expression |
---|---|
deg1mul2 | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul2.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | deg1mul2.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1ring 22270 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
5 | deg1mul2.fb | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
6 | deg1mul2.gb | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
7 | deg1mul2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
8 | deg1mul2.t | . . . . 5 ⊢ · = (.r‘𝑃) | |
9 | 7, 8 | ringcl 20277 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
10 | 4, 5, 6, 9 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
11 | deg1mul2.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
12 | 11, 2, 7 | deg1xrcl 26141 | . . 3 ⊢ ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
14 | deg1mul2.fz | . . . . . 6 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
15 | deg1mul2.z | . . . . . . 7 ⊢ 0 = (0g‘𝑃) | |
16 | 11, 2, 15, 7 | deg1nn0cl 26147 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
17 | 1, 5, 14, 16 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
18 | deg1mul2.gz | . . . . . 6 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
19 | 11, 2, 15, 7 | deg1nn0cl 26147 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → (𝐷‘𝐺) ∈ ℕ0) |
20 | 1, 6, 18, 19 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℕ0) |
21 | 17, 20 | nn0addcld 12617 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0) |
22 | 21 | nn0red 12614 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ) |
23 | 22 | rexrd 11340 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ*) |
24 | 17 | nn0red 12614 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ) |
25 | 24 | leidd 11856 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
26 | 20 | nn0red 12614 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ) |
27 | 26 | leidd 11856 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ≤ (𝐷‘𝐺)) |
28 | 2, 11, 1, 7, 8, 5, 6, 17, 20, 25, 27 | deg1mulle2 26168 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷‘𝐹) + (𝐷‘𝐺))) |
29 | eqid 2740 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
30 | 2, 8, 29, 7, 11, 15, 1, 5, 14, 6, 18 | coe1mul4 26159 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺)))) |
31 | eqid 2740 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
32 | eqid 2740 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
33 | 11, 2, 15, 7, 31, 32 | deg1ldg 26151 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
34 | 1, 6, 18, 33 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
35 | deg1mul2.fc | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) | |
36 | eqid 2740 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
37 | 32, 7, 2, 36 | coe1f 22234 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
38 | 6, 37 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
39 | 38, 20 | ffvelcdmd 7119 | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) |
40 | deg1mul2.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
41 | 40, 36, 29, 31 | rrgeq0i 20721 | . . . . . . 7 ⊢ ((((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸 ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
42 | 35, 39, 41 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
43 | 42 | necon3d 2967 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅) → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅))) |
44 | 34, 43 | mpd 15 | . . . 4 ⊢ (𝜑 → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅)) |
45 | 30, 44 | eqnetrd 3014 | . . 3 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) |
46 | eqid 2740 | . . . 4 ⊢ (coe1‘(𝐹 · 𝐺)) = (coe1‘(𝐹 · 𝐺)) | |
47 | 11, 2, 7, 31, 46 | deg1ge 26157 | . . 3 ⊢ (((𝐹 · 𝐺) ∈ 𝐵 ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0 ∧ ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
48 | 10, 21, 45, 47 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
49 | 13, 23, 28, 48 | xrletrid 13217 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 + caddc 11187 ℝ*cxr 11323 ≤ cle 11325 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 0gc0g 17499 Ringcrg 20260 RLRegcrlreg 20713 Poly1cpl1 22199 coe1cco1 22200 deg1cdg1 26113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-rlreg 20716 df-cnfld 21388 df-psr 21952 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-ply1 22204 df-coe1 22205 df-mdeg 26114 df-deg1 26115 |
This theorem is referenced by: deg1mul 26174 ply1domn 26183 ply1divmo 26195 fta1glem1 26227 ply1unit 33565 m1pmeq 33573 minplyirredlem 33703 mon1psubm 43160 deg1mhm 43161 |
Copyright terms: Public domain | W3C validator |