| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1mul2 | Structured version Visualization version GIF version | ||
| Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1mul2.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1mul2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1mul2.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| deg1mul2.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1mul2.t | ⊢ · = (.r‘𝑃) |
| deg1mul2.z | ⊢ 0 = (0g‘𝑃) |
| deg1mul2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| deg1mul2.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| deg1mul2.fz | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
| deg1mul2.fc | ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) |
| deg1mul2.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| deg1mul2.gz | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
| Ref | Expression |
|---|---|
| deg1mul2 | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1mul2.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | deg1mul2.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1ring 22155 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 5 | deg1mul2.fb | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 6 | deg1mul2.gb | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 7 | deg1mul2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 8 | deg1mul2.t | . . . . 5 ⊢ · = (.r‘𝑃) | |
| 9 | 7, 8 | ringcl 20163 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
| 10 | 4, 5, 6, 9 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
| 11 | deg1mul2.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 12 | 11, 2, 7 | deg1xrcl 26009 | . . 3 ⊢ ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
| 14 | deg1mul2.fz | . . . . . 6 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
| 15 | deg1mul2.z | . . . . . . 7 ⊢ 0 = (0g‘𝑃) | |
| 16 | 11, 2, 15, 7 | deg1nn0cl 26015 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
| 17 | 1, 5, 14, 16 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
| 18 | deg1mul2.gz | . . . . . 6 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
| 19 | 11, 2, 15, 7 | deg1nn0cl 26015 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → (𝐷‘𝐺) ∈ ℕ0) |
| 20 | 1, 6, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℕ0) |
| 21 | 17, 20 | nn0addcld 12441 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0) |
| 22 | 21 | nn0red 12438 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ) |
| 23 | 22 | rexrd 11157 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ*) |
| 24 | 17 | nn0red 12438 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ) |
| 25 | 24 | leidd 11678 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
| 26 | 20 | nn0red 12438 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ) |
| 27 | 26 | leidd 11678 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ≤ (𝐷‘𝐺)) |
| 28 | 2, 11, 1, 7, 8, 5, 6, 17, 20, 25, 27 | deg1mulle2 26036 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷‘𝐹) + (𝐷‘𝐺))) |
| 29 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 30 | 2, 8, 29, 7, 11, 15, 1, 5, 14, 6, 18 | coe1mul4 26027 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺)))) |
| 31 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 32 | eqid 2731 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
| 33 | 11, 2, 15, 7, 31, 32 | deg1ldg 26019 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
| 34 | 1, 6, 18, 33 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
| 35 | deg1mul2.fc | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) | |
| 36 | eqid 2731 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 37 | 32, 7, 2, 36 | coe1f 22119 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 38 | 6, 37 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 39 | 38, 20 | ffvelcdmd 7013 | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) |
| 40 | deg1mul2.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 41 | 40, 36, 29, 31 | rrgeq0i 20609 | . . . . . . 7 ⊢ ((((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸 ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
| 42 | 35, 39, 41 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
| 43 | 42 | necon3d 2949 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅) → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅))) |
| 44 | 34, 43 | mpd 15 | . . . 4 ⊢ (𝜑 → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅)) |
| 45 | 30, 44 | eqnetrd 2995 | . . 3 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) |
| 46 | eqid 2731 | . . . 4 ⊢ (coe1‘(𝐹 · 𝐺)) = (coe1‘(𝐹 · 𝐺)) | |
| 47 | 11, 2, 7, 31, 46 | deg1ge 26025 | . . 3 ⊢ (((𝐹 · 𝐺) ∈ 𝐵 ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0 ∧ ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
| 48 | 10, 21, 45, 47 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
| 49 | 13, 23, 28, 48 | xrletrid 13049 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 + caddc 11004 ℝ*cxr 11140 ≤ cle 11142 ℕ0cn0 12376 Basecbs 17115 .rcmulr 17157 0gc0g 17338 Ringcrg 20146 RLRegcrlreg 20601 Poly1cpl1 22084 coe1cco1 22085 deg1cdg1 25981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-subrng 20456 df-subrg 20480 df-rlreg 20604 df-cnfld 21287 df-psr 21841 df-mpl 21843 df-opsr 21845 df-psr1 22087 df-ply1 22089 df-coe1 22090 df-mdeg 25982 df-deg1 25983 |
| This theorem is referenced by: deg1mul 26042 ply1domn 26051 ply1divmo 26063 fta1glem1 26095 ply1unit 33530 m1pmeq 33539 minplyirredlem 33715 mon1psubm 43232 deg1mhm 43233 |
| Copyright terms: Public domain | W3C validator |