![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1mul2 | Structured version Visualization version GIF version |
Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1mul2.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1mul2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1mul2.e | ⊢ 𝐸 = (RLReg‘𝑅) |
deg1mul2.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1mul2.t | ⊢ · = (.r‘𝑃) |
deg1mul2.z | ⊢ 0 = (0g‘𝑃) |
deg1mul2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1mul2.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1mul2.fz | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
deg1mul2.fc | ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) |
deg1mul2.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1mul2.gz | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
Ref | Expression |
---|---|
deg1mul2 | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul2.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | deg1mul2.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1ring 21619 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
5 | deg1mul2.fb | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
6 | deg1mul2.gb | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
7 | deg1mul2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
8 | deg1mul2.t | . . . . 5 ⊢ · = (.r‘𝑃) | |
9 | 7, 8 | ringcl 19981 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
10 | 4, 5, 6, 9 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
11 | deg1mul2.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
12 | 11, 2, 7 | deg1xrcl 25447 | . . 3 ⊢ ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
14 | deg1mul2.fz | . . . . . 6 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
15 | deg1mul2.z | . . . . . . 7 ⊢ 0 = (0g‘𝑃) | |
16 | 11, 2, 15, 7 | deg1nn0cl 25453 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
17 | 1, 5, 14, 16 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
18 | deg1mul2.gz | . . . . . 6 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
19 | 11, 2, 15, 7 | deg1nn0cl 25453 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → (𝐷‘𝐺) ∈ ℕ0) |
20 | 1, 6, 18, 19 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℕ0) |
21 | 17, 20 | nn0addcld 12477 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0) |
22 | 21 | nn0red 12474 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ) |
23 | 22 | rexrd 11205 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ*) |
24 | 17 | nn0red 12474 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ) |
25 | 24 | leidd 11721 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
26 | 20 | nn0red 12474 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ) |
27 | 26 | leidd 11721 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ≤ (𝐷‘𝐺)) |
28 | 2, 11, 1, 7, 8, 5, 6, 17, 20, 25, 27 | deg1mulle2 25474 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷‘𝐹) + (𝐷‘𝐺))) |
29 | eqid 2736 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
30 | 2, 8, 29, 7, 11, 15, 1, 5, 14, 6, 18 | coe1mul4 25465 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺)))) |
31 | eqid 2736 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
32 | eqid 2736 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
33 | 11, 2, 15, 7, 31, 32 | deg1ldg 25457 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
34 | 1, 6, 18, 33 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
35 | deg1mul2.fc | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) | |
36 | eqid 2736 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
37 | 32, 7, 2, 36 | coe1f 21582 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
38 | 6, 37 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
39 | 38, 20 | ffvelcdmd 7036 | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) |
40 | deg1mul2.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
41 | 40, 36, 29, 31 | rrgeq0i 20759 | . . . . . . 7 ⊢ ((((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸 ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
42 | 35, 39, 41 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
43 | 42 | necon3d 2964 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅) → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅))) |
44 | 34, 43 | mpd 15 | . . . 4 ⊢ (𝜑 → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅)) |
45 | 30, 44 | eqnetrd 3011 | . . 3 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) |
46 | eqid 2736 | . . . 4 ⊢ (coe1‘(𝐹 · 𝐺)) = (coe1‘(𝐹 · 𝐺)) | |
47 | 11, 2, 7, 31, 46 | deg1ge 25463 | . . 3 ⊢ (((𝐹 · 𝐺) ∈ 𝐵 ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0 ∧ ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
48 | 10, 21, 45, 47 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
49 | 13, 23, 28, 48 | xrletrid 13074 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5105 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 + caddc 11054 ℝ*cxr 11188 ≤ cle 11190 ℕ0cn0 12413 Basecbs 17083 .rcmulr 17134 0gc0g 17321 Ringcrg 19964 RLRegcrlreg 20749 Poly1cpl1 21548 coe1cco1 21549 deg1 cdg1 25416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-subrg 20220 df-rlreg 20753 df-cnfld 20797 df-psr 21311 df-mpl 21313 df-opsr 21315 df-psr1 21551 df-ply1 21553 df-coe1 21554 df-mdeg 25417 df-deg1 25418 |
This theorem is referenced by: ply1domn 25488 ply1divmo 25500 fta1glem1 25530 mon1psubm 41519 deg1mhm 41520 |
Copyright terms: Public domain | W3C validator |