MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscmid Structured version   Visualization version   GIF version

Theorem scmatscmid 22400
Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatscmid ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
Distinct variable groups:   𝐾,𝑐   𝑁,𝑐   𝑅,𝑐   𝑀,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   𝑆(𝑐)   · (𝑐)   1 (𝑐)   𝑉(𝑐)

Proof of Theorem scmatscmid
StepHypRef Expression
1 scmatval.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatval.b . . . 4 𝐵 = (Base‘𝐴)
4 scmatval.1 . . . 4 1 = (1r𝐴)
5 scmatval.t . . . 4 · = ( ·𝑠𝐴)
6 scmatval.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 22399 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))))
87simplbda 499 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ 𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
983impa 1109 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186   ·𝑠 cvsca 17231  1rcur 20097   Mat cmat 22301   ScMat cscmat 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-scmat 22385
This theorem is referenced by:  scmate  22404  scmatscm  22407  scmataddcl  22410  scmatsubcl  22411  scmatfo  22424
  Copyright terms: Public domain W3C validator