![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatscmid | Structured version Visualization version GIF version |
Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatval.k | โข ๐พ = (Baseโ๐ ) |
scmatval.a | โข ๐ด = (๐ Mat ๐ ) |
scmatval.b | โข ๐ต = (Baseโ๐ด) |
scmatval.1 | โข 1 = (1rโ๐ด) |
scmatval.t | โข ยท = ( ยท๐ โ๐ด) |
scmatval.s | โข ๐ = (๐ ScMat ๐ ) |
Ref | Expression |
---|---|
scmatscmid | โข ((๐ โ Fin โง ๐ โ ๐ โง ๐ โ ๐) โ โ๐ โ ๐พ ๐ = (๐ ยท 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatval.k | . . . 4 โข ๐พ = (Baseโ๐ ) | |
2 | scmatval.a | . . . 4 โข ๐ด = (๐ Mat ๐ ) | |
3 | scmatval.b | . . . 4 โข ๐ต = (Baseโ๐ด) | |
4 | scmatval.1 | . . . 4 โข 1 = (1rโ๐ด) | |
5 | scmatval.t | . . . 4 โข ยท = ( ยท๐ โ๐ด) | |
6 | scmatval.s | . . . 4 โข ๐ = (๐ ScMat ๐ ) | |
7 | 1, 2, 3, 4, 5, 6 | scmatel 22007 | . . 3 โข ((๐ โ Fin โง ๐ โ ๐) โ (๐ โ ๐ โ (๐ โ ๐ต โง โ๐ โ ๐พ ๐ = (๐ ยท 1 )))) |
8 | 7 | simplbda 501 | . 2 โข (((๐ โ Fin โง ๐ โ ๐) โง ๐ โ ๐) โ โ๐ โ ๐พ ๐ = (๐ ยท 1 )) |
9 | 8 | 3impa 1111 | 1 โข ((๐ โ Fin โง ๐ โ ๐ โง ๐ โ ๐) โ โ๐ โ ๐พ ๐ = (๐ ยท 1 )) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 โง w3a 1088 = wceq 1542 โ wcel 2107 โwrex 3071 โcfv 6544 (class class class)co 7409 Fincfn 8939 Basecbs 17144 ยท๐ cvsca 17201 1rcur 20004 Mat cmat 21907 ScMat cscmat 21991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-scmat 21993 |
This theorem is referenced by: scmate 22012 scmatscm 22015 scmataddcl 22018 scmatsubcl 22019 scmatfo 22032 |
Copyright terms: Public domain | W3C validator |