| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatscmid | Structured version Visualization version GIF version | ||
| Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.) |
| Ref | Expression |
|---|---|
| scmatval.k | ⊢ 𝐾 = (Base‘𝑅) |
| scmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
| scmatval.1 | ⊢ 1 = (1r‘𝐴) |
| scmatval.t | ⊢ · = ( ·𝑠 ‘𝐴) |
| scmatval.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
| Ref | Expression |
|---|---|
| scmatscmid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 2 | scmatval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | scmatval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | scmatval.1 | . . . 4 ⊢ 1 = (1r‘𝐴) | |
| 5 | scmatval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 6 | scmatval.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | scmatel 22408 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
| 8 | 7 | simplbda 499 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) |
| 9 | 8 | 3impa 1109 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17138 ·𝑠 cvsca 17183 1rcur 20084 Mat cmat 22310 ScMat cscmat 22392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-scmat 22394 |
| This theorem is referenced by: scmate 22413 scmatscm 22416 scmataddcl 22419 scmatsubcl 22420 scmatfo 22433 |
| Copyright terms: Public domain | W3C validator |