Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatscmid | Structured version Visualization version GIF version |
Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatval.1 | ⊢ 1 = (1r‘𝐴) |
scmatval.t | ⊢ · = ( ·𝑠 ‘𝐴) |
scmatval.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatscmid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | scmatval.1 | . . . 4 ⊢ 1 = (1r‘𝐴) | |
5 | scmatval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
6 | scmatval.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatel 21654 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
8 | 7 | simplbda 500 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) |
9 | 8 | 3impa 1109 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 Basecbs 16912 ·𝑠 cvsca 16966 1rcur 19737 Mat cmat 21554 ScMat cscmat 21638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-scmat 21640 |
This theorem is referenced by: scmate 21659 scmatscm 21662 scmataddcl 21665 scmatsubcl 21666 scmatfo 21679 |
Copyright terms: Public domain | W3C validator |