MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscmid Structured version   Visualization version   GIF version

Theorem scmatscmid 21563
Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatscmid ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
Distinct variable groups:   𝐾,𝑐   𝑁,𝑐   𝑅,𝑐   𝑀,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   𝑆(𝑐)   · (𝑐)   1 (𝑐)   𝑉(𝑐)

Proof of Theorem scmatscmid
StepHypRef Expression
1 scmatval.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatval.b . . . 4 𝐵 = (Base‘𝐴)
4 scmatval.1 . . . 4 1 = (1r𝐴)
5 scmatval.t . . . 4 · = ( ·𝑠𝐴)
6 scmatval.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 21562 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))))
87simplbda 499 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ 𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
983impa 1108 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840   ·𝑠 cvsca 16892  1rcur 19652   Mat cmat 21464   ScMat cscmat 21546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-scmat 21548
This theorem is referenced by:  scmate  21567  scmatscm  21570  scmataddcl  21573  scmatsubcl  21574  scmatfo  21587
  Copyright terms: Public domain W3C validator