| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomnsym | Structured version Visualization version GIF version | ||
| Description: Strict dominance is asymmetric. Theorem 21(ii) of [Suppes] p. 97. (Contributed by NM, 8-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomnsym | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomnen 8903 | . 2 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
| 2 | sdomdom 8902 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
| 3 | sdomdom 8902 | . . 3 ⊢ (𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴) | |
| 4 | sbth 9010 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | |
| 5 | 2, 3, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ 𝐵) |
| 6 | 1, 5 | mtand 815 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5089 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: domnsym 9016 gchpwdom 10561 |
| Copyright terms: Public domain | W3C validator |