MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomnsym Structured version   Visualization version   GIF version

Theorem sdomnsym 8867
Description: Strict dominance is asymmetric. Theorem 21(ii) of [Suppes] p. 97. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
sdomnsym (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem sdomnsym
StepHypRef Expression
1 sdomnen 8752 . 2 (𝐴𝐵 → ¬ 𝐴𝐵)
2 sdomdom 8751 . . 3 (𝐴𝐵𝐴𝐵)
3 sdomdom 8751 . . 3 (𝐵𝐴𝐵𝐴)
4 sbth 8862 . . 3 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
52, 3, 4syl2an 596 . 2 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
61, 5mtand 813 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   class class class wbr 5079  cen 8713  cdom 8714  csdm 8715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-en 8717  df-dom 8718  df-sdom 8719
This theorem is referenced by:  domnsym  8868  gchpwdom  10427
  Copyright terms: Public domain W3C validator