Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomnsym | Structured version Visualization version GIF version |
Description: Strict dominance is asymmetric. Theorem 21(ii) of [Suppes] p. 97. (Contributed by NM, 8-Jun-1998.) |
Ref | Expression |
---|---|
sdomnsym | ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomnen 8752 | . 2 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
2 | sdomdom 8751 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
3 | sdomdom 8751 | . . 3 ⊢ (𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴) | |
4 | sbth 8862 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | |
5 | 2, 3, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ 𝐵) |
6 | 1, 5 | mtand 813 | 1 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5079 ≈ cen 8713 ≼ cdom 8714 ≺ csdm 8715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-en 8717 df-dom 8718 df-sdom 8719 |
This theorem is referenced by: domnsym 8868 gchpwdom 10427 |
Copyright terms: Public domain | W3C validator |