| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 9015 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5143 ≈ cen 8982 ≼ cdom 8983 ≺ csdm 8984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-br 5144 df-sdom 8988 |
| This theorem is referenced by: domdifsn 9094 sucdom2OLD 9122 sdomnsym 9138 sdomdomtr 9150 domsdomtr 9152 sdomtr 9155 domnsymfi 9240 sdomdomtrfi 9241 domsdomtrfi 9242 sucdom2 9243 php3 9249 1sdom2dom 9283 sucxpdom 9291 findcard3 9318 isfinite2 9334 card2on 9594 fict 9693 fidomtri2 10034 prdom2 10046 infxpenlem 10053 indcardi 10081 alephnbtwn2 10112 alephsucdom 10119 alephdom 10121 dfac13 10183 djulepw 10233 infdjuabs 10245 infdif 10248 infunsdom1 10252 infunsdom 10253 infxp 10254 cfslb2n 10308 sdom2en01 10342 isfin32i 10405 fin34 10430 fin67 10435 hsmexlem1 10466 hsmex3 10474 entri3 10599 alephexp1 10619 gchdomtri 10669 canthp1 10694 pwfseqlem5 10703 gchdjuidm 10708 gchxpidm 10709 gchpwdom 10710 hargch 10713 gchaclem 10718 gchhar 10719 gchac 10721 inawinalem 10729 inar1 10815 rankcf 10817 tskuni 10823 grothac 10870 rpnnen 16263 rexpen 16264 aleph1irr 16282 dis1stc 23507 hauspwdom 23509 sibfof 34342 ctbssinf 37407 pibt2 37418 heiborlem3 37820 harinf 43046 saluncl 46332 meadjun 46477 meaiunlelem 46483 omeunle 46531 |
| Copyright terms: Public domain | W3C validator |