| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8900 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5092 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-br 5093 df-sdom 8875 |
| This theorem is referenced by: domdifsn 8977 sdomnsym 9019 sdomdomtr 9027 domsdomtr 9029 sdomtr 9032 domnsymfi 9114 sdomdomtrfi 9115 domsdomtrfi 9116 sucdom2 9117 php3 9123 1sdom2dom 9143 sucxpdom 9150 findcard3 9172 isfinite2 9187 card2on 9446 fict 9549 fidomtri2 9890 prdom2 9900 infxpenlem 9907 indcardi 9935 alephnbtwn2 9966 alephsucdom 9973 alephdom 9975 dfac13 10037 djulepw 10087 infdjuabs 10099 infdif 10102 infunsdom1 10106 infunsdom 10107 infxp 10108 cfslb2n 10162 sdom2en01 10196 isfin32i 10259 fin34 10284 fin67 10289 hsmexlem1 10320 hsmex3 10328 entri3 10453 alephexp1 10473 gchdomtri 10523 canthp1 10548 pwfseqlem5 10557 gchdjuidm 10562 gchxpidm 10563 gchpwdom 10564 hargch 10567 gchaclem 10572 gchhar 10573 gchac 10575 inawinalem 10583 inar1 10669 rankcf 10671 tskuni 10677 grothac 10724 rpnnen 16136 rexpen 16137 aleph1irr 16155 dis1stc 23384 hauspwdom 23386 sibfof 34314 ctbssinf 37390 pibt2 37401 heiborlem3 37803 harinf 43017 saluncl 46308 meadjun 46453 meaiunlelem 46459 omeunle 46507 |
| Copyright terms: Public domain | W3C validator |