Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version |
Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 8837 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5093 ≈ cen 8802 ≼ cdom 8803 ≺ csdm 8804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-dif 3901 df-br 5094 df-sdom 8808 |
This theorem is referenced by: domdifsn 8920 sucdom2OLD 8948 sdomnsym 8964 sdomdomtr 8976 domsdomtr 8978 sdomtr 8981 domnsymfi 9069 sdomdomtrfi 9070 domsdomtrfi 9071 sucdom2 9072 php3 9078 1sdom2dom 9113 sucxpdom 9121 findcard3 9151 isfinite2 9167 pwfiOLD 9213 card2on 9412 fict 9511 fidomtri2 9852 prdom2 9864 infxpenlem 9871 indcardi 9899 alephnbtwn2 9930 alephsucdom 9937 alephdom 9939 dfac13 10000 djulepw 10050 infdjuabs 10064 infdif 10067 infunsdom1 10071 infunsdom 10072 infxp 10073 cfslb2n 10126 sdom2en01 10160 isfin32i 10223 fin34 10248 fin67 10253 hsmexlem1 10284 hsmex3 10292 entri3 10417 alephexp1 10437 gchdomtri 10487 canthp1 10512 pwfseqlem5 10521 gchdjuidm 10526 gchxpidm 10527 gchpwdom 10528 hargch 10531 gchaclem 10536 gchhar 10537 gchac 10539 inawinalem 10547 inar1 10633 rankcf 10635 tskuni 10641 grothac 10688 rpnnen 16036 rexpen 16037 aleph1irr 16055 dis1stc 22757 hauspwdom 22759 sibfof 32607 ctbssinf 35733 pibt2 35744 heiborlem3 36127 harinf 41170 saluncl 44246 meadjun 44389 meaiunlelem 44395 omeunle 44443 |
Copyright terms: Public domain | W3C validator |