![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version |
Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 9035 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-br 5167 df-sdom 9006 |
This theorem is referenced by: domdifsn 9120 sucdom2OLD 9148 sdomnsym 9164 sdomdomtr 9176 domsdomtr 9178 sdomtr 9181 domnsymfi 9266 sdomdomtrfi 9267 domsdomtrfi 9268 sucdom2 9269 php3 9275 1sdom2dom 9310 sucxpdom 9318 findcard3 9346 isfinite2 9362 pwfiOLD 9417 card2on 9623 fict 9722 fidomtri2 10063 prdom2 10075 infxpenlem 10082 indcardi 10110 alephnbtwn2 10141 alephsucdom 10148 alephdom 10150 dfac13 10212 djulepw 10262 infdjuabs 10274 infdif 10277 infunsdom1 10281 infunsdom 10282 infxp 10283 cfslb2n 10337 sdom2en01 10371 isfin32i 10434 fin34 10459 fin67 10464 hsmexlem1 10495 hsmex3 10503 entri3 10628 alephexp1 10648 gchdomtri 10698 canthp1 10723 pwfseqlem5 10732 gchdjuidm 10737 gchxpidm 10738 gchpwdom 10739 hargch 10742 gchaclem 10747 gchhar 10748 gchac 10750 inawinalem 10758 inar1 10844 rankcf 10846 tskuni 10852 grothac 10899 rpnnen 16275 rexpen 16276 aleph1irr 16294 dis1stc 23528 hauspwdom 23530 sibfof 34305 ctbssinf 37372 pibt2 37383 heiborlem3 37773 harinf 42991 saluncl 46238 meadjun 46383 meaiunlelem 46389 omeunle 46437 |
Copyright terms: Public domain | W3C validator |