| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8897 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5089 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-br 5090 df-sdom 8872 |
| This theorem is referenced by: domdifsn 8973 sdomnsym 9015 sdomdomtr 9023 domsdomtr 9025 sdomtr 9028 domnsymfi 9109 sdomdomtrfi 9110 domsdomtrfi 9111 sucdom2 9112 php3 9118 1sdom2dom 9138 sucxpdom 9145 findcard3 9167 isfinite2 9182 card2on 9440 fict 9543 fidomtri2 9887 prdom2 9897 infxpenlem 9904 indcardi 9932 alephnbtwn2 9963 alephsucdom 9970 alephdom 9972 dfac13 10034 djulepw 10084 infdjuabs 10096 infdif 10099 infunsdom1 10103 infunsdom 10104 infxp 10105 cfslb2n 10159 sdom2en01 10193 isfin32i 10256 fin34 10281 fin67 10286 hsmexlem1 10317 hsmex3 10325 entri3 10450 alephexp1 10470 gchdomtri 10520 canthp1 10545 pwfseqlem5 10554 gchdjuidm 10559 gchxpidm 10560 gchpwdom 10561 hargch 10564 gchaclem 10569 gchhar 10570 gchac 10572 inawinalem 10580 inar1 10666 rankcf 10668 tskuni 10674 grothac 10721 rpnnen 16136 rexpen 16137 aleph1irr 16155 dis1stc 23414 hauspwdom 23416 sibfof 34353 ctbssinf 37450 pibt2 37461 heiborlem3 37863 harinf 43137 saluncl 46425 meadjun 46570 meaiunlelem 46576 omeunle 46624 |
| Copyright terms: Public domain | W3C validator |