| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8949 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5110 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-br 5111 df-sdom 8924 |
| This theorem is referenced by: domdifsn 9028 sucdom2OLD 9056 sdomnsym 9072 sdomdomtr 9080 domsdomtr 9082 sdomtr 9085 domnsymfi 9170 sdomdomtrfi 9171 domsdomtrfi 9172 sucdom2 9173 php3 9179 1sdom2dom 9201 sucxpdom 9209 findcard3 9236 isfinite2 9252 card2on 9514 fict 9613 fidomtri2 9954 prdom2 9966 infxpenlem 9973 indcardi 10001 alephnbtwn2 10032 alephsucdom 10039 alephdom 10041 dfac13 10103 djulepw 10153 infdjuabs 10165 infdif 10168 infunsdom1 10172 infunsdom 10173 infxp 10174 cfslb2n 10228 sdom2en01 10262 isfin32i 10325 fin34 10350 fin67 10355 hsmexlem1 10386 hsmex3 10394 entri3 10519 alephexp1 10539 gchdomtri 10589 canthp1 10614 pwfseqlem5 10623 gchdjuidm 10628 gchxpidm 10629 gchpwdom 10630 hargch 10633 gchaclem 10638 gchhar 10639 gchac 10641 inawinalem 10649 inar1 10735 rankcf 10737 tskuni 10743 grothac 10790 rpnnen 16202 rexpen 16203 aleph1irr 16221 dis1stc 23393 hauspwdom 23395 sibfof 34338 ctbssinf 37401 pibt2 37412 heiborlem3 37814 harinf 43030 saluncl 46322 meadjun 46467 meaiunlelem 46473 omeunle 46521 |
| Copyright terms: Public domain | W3C validator |