| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8923 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-br 5103 df-sdom 8898 |
| This theorem is referenced by: domdifsn 9001 sdomnsym 9043 sdomdomtr 9051 domsdomtr 9053 sdomtr 9056 domnsymfi 9141 sdomdomtrfi 9142 domsdomtrfi 9143 sucdom2 9144 php3 9150 1sdom2dom 9170 sucxpdom 9178 findcard3 9205 isfinite2 9221 card2on 9483 fict 9582 fidomtri2 9923 prdom2 9935 infxpenlem 9942 indcardi 9970 alephnbtwn2 10001 alephsucdom 10008 alephdom 10010 dfac13 10072 djulepw 10122 infdjuabs 10134 infdif 10137 infunsdom1 10141 infunsdom 10142 infxp 10143 cfslb2n 10197 sdom2en01 10231 isfin32i 10294 fin34 10319 fin67 10324 hsmexlem1 10355 hsmex3 10363 entri3 10488 alephexp1 10508 gchdomtri 10558 canthp1 10583 pwfseqlem5 10592 gchdjuidm 10597 gchxpidm 10598 gchpwdom 10599 hargch 10602 gchaclem 10607 gchhar 10608 gchac 10610 inawinalem 10618 inar1 10704 rankcf 10706 tskuni 10712 grothac 10759 rpnnen 16171 rexpen 16172 aleph1irr 16190 dis1stc 23419 hauspwdom 23421 sibfof 34324 ctbssinf 37387 pibt2 37398 heiborlem3 37800 harinf 43016 saluncl 46308 meadjun 46453 meaiunlelem 46459 omeunle 46507 |
| Copyright terms: Public domain | W3C validator |