Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version |
Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 8763 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-br 5075 df-sdom 8736 |
This theorem is referenced by: domdifsn 8841 sucdom2OLD 8869 sdomnsym 8885 sdomdomtr 8897 domsdomtr 8899 sdomtr 8902 domnsymfi 8986 sdomdomtrfi 8987 domsdomtrfi 8988 sucdom2 8989 php3 8995 sucxpdom 9032 isfinite2 9072 pwfiOLD 9114 card2on 9313 fict 9411 fidomtri2 9752 prdom2 9762 infxpenlem 9769 indcardi 9797 alephnbtwn2 9828 alephsucdom 9835 alephdom 9837 dfac13 9898 djulepw 9948 infdjuabs 9962 infdif 9965 infunsdom1 9969 infunsdom 9970 infxp 9971 cfslb2n 10024 sdom2en01 10058 isfin32i 10121 fin34 10146 fin67 10151 hsmexlem1 10182 hsmex3 10190 entri3 10315 alephexp1 10335 gchdomtri 10385 canthp1 10410 pwfseqlem5 10419 gchdjuidm 10424 gchxpidm 10425 gchpwdom 10426 hargch 10429 gchaclem 10434 gchhar 10435 gchac 10437 inawinalem 10445 inar1 10531 rankcf 10533 tskuni 10539 grothac 10586 rpnnen 15936 rexpen 15937 aleph1irr 15955 dis1stc 22650 hauspwdom 22652 sibfof 32307 ctbssinf 35577 pibt2 35588 heiborlem3 35971 harinf 40856 saluncl 43858 meadjun 44000 meaiunlelem 44006 omeunle 44054 |
Copyright terms: Public domain | W3C validator |