| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8994 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5124 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-br 5125 df-sdom 8967 |
| This theorem is referenced by: domdifsn 9073 sucdom2OLD 9101 sdomnsym 9117 sdomdomtr 9129 domsdomtr 9131 sdomtr 9134 domnsymfi 9219 sdomdomtrfi 9220 domsdomtrfi 9221 sucdom2 9222 php3 9228 1sdom2dom 9260 sucxpdom 9268 findcard3 9295 isfinite2 9311 card2on 9573 fict 9672 fidomtri2 10013 prdom2 10025 infxpenlem 10032 indcardi 10060 alephnbtwn2 10091 alephsucdom 10098 alephdom 10100 dfac13 10162 djulepw 10212 infdjuabs 10224 infdif 10227 infunsdom1 10231 infunsdom 10232 infxp 10233 cfslb2n 10287 sdom2en01 10321 isfin32i 10384 fin34 10409 fin67 10414 hsmexlem1 10445 hsmex3 10453 entri3 10578 alephexp1 10598 gchdomtri 10648 canthp1 10673 pwfseqlem5 10682 gchdjuidm 10687 gchxpidm 10688 gchpwdom 10689 hargch 10692 gchaclem 10697 gchhar 10698 gchac 10700 inawinalem 10708 inar1 10794 rankcf 10796 tskuni 10802 grothac 10849 rpnnen 16250 rexpen 16251 aleph1irr 16269 dis1stc 23442 hauspwdom 23444 sibfof 34377 ctbssinf 37429 pibt2 37440 heiborlem3 37842 harinf 43025 saluncl 46313 meadjun 46458 meaiunlelem 46464 omeunle 46512 |
| Copyright terms: Public domain | W3C validator |