Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version |
Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsdom 8718 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-br 5071 df-sdom 8694 |
This theorem is referenced by: domdifsn 8795 sucdom2 8822 sdomnsym 8838 sdomdomtr 8846 domsdomtr 8848 sdomtr 8851 sucxpdom 8961 isfinite2 9002 pwfiOLD 9044 card2on 9243 fict 9341 fidomtri2 9683 prdom2 9693 infxpenlem 9700 indcardi 9728 alephnbtwn2 9759 alephsucdom 9766 alephdom 9768 dfac13 9829 djulepw 9879 infdjuabs 9893 infdif 9896 infunsdom1 9900 infunsdom 9901 infxp 9902 cfslb2n 9955 sdom2en01 9989 isfin32i 10052 fin34 10077 fin67 10082 hsmexlem1 10113 hsmex3 10121 entri3 10246 alephexp1 10266 gchdomtri 10316 canthp1 10341 pwfseqlem5 10350 gchdjuidm 10355 gchxpidm 10356 gchpwdom 10357 hargch 10360 gchaclem 10365 gchhar 10366 gchac 10368 inawinalem 10376 inar1 10462 rankcf 10464 tskuni 10470 grothac 10517 rpnnen 15864 rexpen 15865 aleph1irr 15883 dis1stc 22558 hauspwdom 22560 sibfof 32207 ctbssinf 35504 pibt2 35515 heiborlem3 35898 harinf 40772 saluncl 43748 meadjun 43890 meaiunlelem 43896 omeunle 43944 |
Copyright terms: Public domain | W3C validator |