| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomdom | ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom 8946 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 class class class wbr 5107 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-br 5108 df-sdom 8921 |
| This theorem is referenced by: domdifsn 9024 sdomnsym 9066 sdomdomtr 9074 domsdomtr 9076 sdomtr 9079 domnsymfi 9164 sdomdomtrfi 9165 domsdomtrfi 9166 sucdom2 9167 php3 9173 1sdom2dom 9194 sucxpdom 9202 findcard3 9229 isfinite2 9245 card2on 9507 fict 9606 fidomtri2 9947 prdom2 9959 infxpenlem 9966 indcardi 9994 alephnbtwn2 10025 alephsucdom 10032 alephdom 10034 dfac13 10096 djulepw 10146 infdjuabs 10158 infdif 10161 infunsdom1 10165 infunsdom 10166 infxp 10167 cfslb2n 10221 sdom2en01 10255 isfin32i 10318 fin34 10343 fin67 10348 hsmexlem1 10379 hsmex3 10387 entri3 10512 alephexp1 10532 gchdomtri 10582 canthp1 10607 pwfseqlem5 10616 gchdjuidm 10621 gchxpidm 10622 gchpwdom 10623 hargch 10626 gchaclem 10631 gchhar 10632 gchac 10634 inawinalem 10642 inar1 10728 rankcf 10730 tskuni 10736 grothac 10783 rpnnen 16195 rexpen 16196 aleph1irr 16214 dis1stc 23386 hauspwdom 23388 sibfof 34331 ctbssinf 37394 pibt2 37405 heiborlem3 37807 harinf 43023 saluncl 46315 meadjun 46460 meaiunlelem 46466 omeunle 46514 |
| Copyright terms: Public domain | W3C validator |