MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submmulg Structured version   Visualization version   GIF version

Theorem submmulg 18743
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
submmulgcl.t = (.g𝐺)
submmulg.h 𝐻 = (𝐺s 𝑆)
submmulg.t · = (.g𝐻)
Assertion
Ref Expression
submmulg ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))

Proof of Theorem submmulg
StepHypRef Expression
1 simpl1 1190 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
2 submmulg.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
3 eqid 2740 . . . . . . 7 (+g𝐺) = (+g𝐺)
42, 3ressplusg 16996 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
51, 4syl 17 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (+g𝐺) = (+g𝐻))
65seqeq2d 13724 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
76fveq1d 6771 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
8 simpr 485 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
9 eqid 2740 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
109submss 18444 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
11103ad2ant1 1132 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
12 simp3 1137 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝑆)
1311, 12sseldd 3927 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
1413adantr 481 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐺))
15 submmulgcl.t . . . . 5 = (.g𝐺)
16 eqid 2740 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
179, 3, 15, 16mulgnn 18704 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
188, 14, 17syl2anc 584 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
192submbas 18449 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
20193ad2ant1 1132 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 = (Base‘𝐻))
2112, 20eleqtrd 2843 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
2221adantr 481 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐻))
23 eqid 2740 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2740 . . . . 5 (+g𝐻) = (+g𝐻)
25 submmulg.t . . . . 5 · = (.g𝐻)
26 eqid 2740 . . . . 5 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
2723, 24, 25, 26mulgnn 18704 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
288, 22, 27syl2anc 584 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
297, 18, 283eqtr4d 2790 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (𝑁 · 𝑋))
30 simpl1 1190 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑆 ∈ (SubMnd‘𝐺))
31 eqid 2740 . . . . . 6 (0g𝐺) = (0g𝐺)
322, 31subm0 18450 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
3330, 32syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0g𝐺) = (0g𝐻))
3413adantr 481 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺))
359, 31, 15mulg0 18703 . . . . 5 (𝑋 ∈ (Base‘𝐺) → (0 𝑋) = (0g𝐺))
3634, 35syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0g𝐺))
3721adantr 481 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐻))
38 eqid 2740 . . . . . 6 (0g𝐻) = (0g𝐻)
3923, 38, 25mulg0 18703 . . . . 5 (𝑋 ∈ (Base‘𝐻) → (0 · 𝑋) = (0g𝐻))
4037, 39syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐻))
4133, 36, 403eqtr4d 2790 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0 · 𝑋))
42 simpr 485 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑁 = 0)
4342oveq1d 7284 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (0 𝑋))
4442oveq1d 7284 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
4541, 43, 443eqtr4d 2790 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (𝑁 · 𝑋))
46 simp2 1136 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑁 ∈ ℕ0)
47 elnn0 12233 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4846, 47sylib 217 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4929, 45, 48mpjaodan 956 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wss 3892  {csn 4567   × cxp 5587  cfv 6431  (class class class)co 7269  0cc0 10870  1c1 10871  cn 11971  0cn0 12231  seqcseq 13717  Basecbs 16908  s cress 16937  +gcplusg 16958  0gc0g 17146  SubMndcsubmnd 18425  .gcmg 18696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-n0 12232  df-z 12318  df-uz 12580  df-seq 13718  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-0g 17148  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-submnd 18427  df-mulg 18697
This theorem is referenced by:  submod  19170  dchrfi  26399  dchrabs  26404  lgsqrlem1  26490  lgseisenlem4  26522  dchrisum0flblem1  26652  submarchi  31434  idomodle  41016  proot1ex  41021
  Copyright terms: Public domain W3C validator