Proof of Theorem submmulg
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . . 6
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺)) |
2 | | submmulg.h |
. . . . . . 7
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
3 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
4 | 2, 3 | ressplusg 16926 |
. . . . . 6
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(+g‘𝐺) =
(+g‘𝐻)) |
5 | 1, 4 | syl 17 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) →
(+g‘𝐺) =
(+g‘𝐻)) |
6 | 5 | seqeq2d 13656 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) →
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋}))) |
7 | 6 | fveq1d 6758 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) →
(seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
8 | | simpr 484 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
9 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
10 | 9 | submss 18363 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
11 | 10 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
12 | | simp3 1136 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
13 | 11, 12 | sseldd 3918 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
14 | 13 | adantr 480 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐺)) |
15 | | submmulgcl.t |
. . . . 5
⊢ ∙ =
(.g‘𝐺) |
16 | | eqid 2738 |
. . . . 5
⊢
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) |
17 | 9, 3, 15, 16 | mulgnn 18623 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 ∙ 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
18 | 8, 14, 17 | syl2anc 583 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 ∙ 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
19 | 2 | submbas 18368 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻)) |
20 | 19 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
21 | 12, 20 | eleqtrd 2841 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
22 | 21 | adantr 480 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐻)) |
23 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐻) =
(Base‘𝐻) |
24 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐻) = (+g‘𝐻) |
25 | | submmulg.t |
. . . . 5
⊢ · =
(.g‘𝐻) |
26 | | eqid 2738 |
. . . . 5
⊢
seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) |
27 | 23, 24, 25, 26 | mulgnn 18623 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 · 𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
28 | 8, 22, 27 | syl2anc 583 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
29 | 7, 18, 28 | 3eqtr4d 2788 |
. 2
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) |
30 | | simpl1 1189 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 𝑆 ∈ (SubMnd‘𝐺)) |
31 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
32 | 2, 31 | subm0 18369 |
. . . . 5
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
33 | 30, 32 | syl 17 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (0g‘𝐺) = (0g‘𝐻)) |
34 | 13 | adantr 480 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
35 | 9, 31, 15 | mulg0 18622 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝐺) → (0 ∙ 𝑋) = (0g‘𝐺)) |
36 | 34, 35 | syl 17 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (0 ∙ 𝑋) = (0g‘𝐺)) |
37 | 21 | adantr 480 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐻)) |
38 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐻) = (0g‘𝐻) |
39 | 23, 38, 25 | mulg0 18622 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝐻) → (0 · 𝑋) = (0g‘𝐻)) |
40 | 37, 39 | syl 17 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g‘𝐻)) |
41 | 33, 36, 40 | 3eqtr4d 2788 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (0 ∙ 𝑋) = (0 · 𝑋)) |
42 | | simpr 484 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 𝑁 = 0) |
43 | 42 | oveq1d 7270 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 ∙ 𝑋) = (0 ∙ 𝑋)) |
44 | 42 | oveq1d 7270 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋)) |
45 | 41, 43, 44 | 3eqtr4d 2788 |
. 2
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) |
46 | | simp2 1135 |
. . 3
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈
ℕ0) |
47 | | elnn0 12165 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
48 | 46, 47 | sylib 217 |
. 2
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
49 | 29, 45, 48 | mpjaodan 955 |
1
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) |