MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submmulg Structured version   Visualization version   GIF version

Theorem submmulg 19108
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
submmulgcl.t = (.g𝐺)
submmulg.h 𝐻 = (𝐺s 𝑆)
submmulg.t · = (.g𝐻)
Assertion
Ref Expression
submmulg ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))

Proof of Theorem submmulg
StepHypRef Expression
1 simpl1 1188 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
2 submmulg.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
3 eqid 2726 . . . . . . 7 (+g𝐺) = (+g𝐺)
42, 3ressplusg 17299 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
51, 4syl 17 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (+g𝐺) = (+g𝐻))
65seqeq2d 14022 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
76fveq1d 6895 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
8 simpr 483 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
9 eqid 2726 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
109submss 18794 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
11103ad2ant1 1130 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
12 simp3 1135 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝑆)
1311, 12sseldd 3979 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
1413adantr 479 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐺))
15 submmulgcl.t . . . . 5 = (.g𝐺)
16 eqid 2726 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
179, 3, 15, 16mulgnn 19065 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
188, 14, 17syl2anc 582 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
192submbas 18799 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
20193ad2ant1 1130 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 = (Base‘𝐻))
2112, 20eleqtrd 2828 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
2221adantr 479 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐻))
23 eqid 2726 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2726 . . . . 5 (+g𝐻) = (+g𝐻)
25 submmulg.t . . . . 5 · = (.g𝐻)
26 eqid 2726 . . . . 5 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
2723, 24, 25, 26mulgnn 19065 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
288, 22, 27syl2anc 582 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
297, 18, 283eqtr4d 2776 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (𝑁 · 𝑋))
30 simpl1 1188 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑆 ∈ (SubMnd‘𝐺))
31 eqid 2726 . . . . . 6 (0g𝐺) = (0g𝐺)
322, 31subm0 18800 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
3330, 32syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0g𝐺) = (0g𝐻))
3413adantr 479 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺))
359, 31, 15mulg0 19064 . . . . 5 (𝑋 ∈ (Base‘𝐺) → (0 𝑋) = (0g𝐺))
3634, 35syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0g𝐺))
3721adantr 479 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐻))
38 eqid 2726 . . . . . 6 (0g𝐻) = (0g𝐻)
3923, 38, 25mulg0 19064 . . . . 5 (𝑋 ∈ (Base‘𝐻) → (0 · 𝑋) = (0g𝐻))
4037, 39syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐻))
4133, 36, 403eqtr4d 2776 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0 · 𝑋))
42 simpr 483 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑁 = 0)
4342oveq1d 7431 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (0 𝑋))
4442oveq1d 7431 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
4541, 43, 443eqtr4d 2776 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (𝑁 · 𝑋))
46 simp2 1134 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑁 ∈ ℕ0)
47 elnn0 12520 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4846, 47sylib 217 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4929, 45, 48mpjaodan 956 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wss 3946  {csn 4623   × cxp 5672  cfv 6546  (class class class)co 7416  0cc0 11149  1c1 11150  cn 12258  0cn0 12518  seqcseq 14015  Basecbs 17208  s cress 17237  +gcplusg 17261  0gc0g 17449  SubMndcsubmnd 18767  .gcmg 19057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-n0 12519  df-z 12605  df-uz 12869  df-seq 14016  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-mulg 19058
This theorem is referenced by:  finodsubmsubg  19561  submod  19563  dchrfi  27281  dchrabs  27286  lgsqrlem1  27372  lgseisenlem4  27404  dchrisum0flblem1  27534  submarchi  33055  primrootsunit1  41809  primrootscoprmpow  41811  primrootscoprbij  41814  idomodle  42893  proot1ex  42898
  Copyright terms: Public domain W3C validator