MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submmulg Structured version   Visualization version   GIF version

Theorem submmulg 19136
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
submmulgcl.t = (.g𝐺)
submmulg.h 𝐻 = (𝐺s 𝑆)
submmulg.t · = (.g𝐻)
Assertion
Ref Expression
submmulg ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))

Proof of Theorem submmulg
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
2 submmulg.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
3 eqid 2737 . . . . . . 7 (+g𝐺) = (+g𝐺)
42, 3ressplusg 17334 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
51, 4syl 17 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (+g𝐺) = (+g𝐻))
65seqeq2d 14049 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
76fveq1d 6908 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
8 simpr 484 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
9 eqid 2737 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
109submss 18822 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
11103ad2ant1 1134 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
12 simp3 1139 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝑆)
1311, 12sseldd 3984 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
1413adantr 480 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐺))
15 submmulgcl.t . . . . 5 = (.g𝐺)
16 eqid 2737 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
179, 3, 15, 16mulgnn 19093 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
188, 14, 17syl2anc 584 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
192submbas 18827 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
20193ad2ant1 1134 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 = (Base‘𝐻))
2112, 20eleqtrd 2843 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
2221adantr 480 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐻))
23 eqid 2737 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2737 . . . . 5 (+g𝐻) = (+g𝐻)
25 submmulg.t . . . . 5 · = (.g𝐻)
26 eqid 2737 . . . . 5 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
2723, 24, 25, 26mulgnn 19093 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
288, 22, 27syl2anc 584 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
297, 18, 283eqtr4d 2787 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (𝑁 · 𝑋))
30 simpl1 1192 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑆 ∈ (SubMnd‘𝐺))
31 eqid 2737 . . . . . 6 (0g𝐺) = (0g𝐺)
322, 31subm0 18828 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
3330, 32syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0g𝐺) = (0g𝐻))
3413adantr 480 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺))
359, 31, 15mulg0 19092 . . . . 5 (𝑋 ∈ (Base‘𝐺) → (0 𝑋) = (0g𝐺))
3634, 35syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0g𝐺))
3721adantr 480 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐻))
38 eqid 2737 . . . . . 6 (0g𝐻) = (0g𝐻)
3923, 38, 25mulg0 19092 . . . . 5 (𝑋 ∈ (Base‘𝐻) → (0 · 𝑋) = (0g𝐻))
4037, 39syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐻))
4133, 36, 403eqtr4d 2787 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0 · 𝑋))
42 simpr 484 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑁 = 0)
4342oveq1d 7446 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (0 𝑋))
4442oveq1d 7446 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
4541, 43, 443eqtr4d 2787 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (𝑁 · 𝑋))
46 simp2 1138 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑁 ∈ ℕ0)
47 elnn0 12528 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4846, 47sylib 218 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4929, 45, 48mpjaodan 961 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wss 3951  {csn 4626   × cxp 5683  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  cn 12266  0cn0 12526  seqcseq 14042  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484  SubMndcsubmnd 18795  .gcmg 19085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086
This theorem is referenced by:  finodsubmsubg  19585  submod  19587  dchrfi  27299  dchrabs  27304  lgsqrlem1  27390  lgseisenlem4  27422  dchrisum0flblem1  27552  submarchi  33193  primrootsunit1  42098  primrootscoprmpow  42100  primrootscoprbij  42103  idomodle  43203  proot1ex  43208
  Copyright terms: Public domain W3C validator