Step | Hyp | Ref
| Expression |
1 | | simpl1 1191 |
. . . . . 6
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β π β (SubMndβπΊ)) |
2 | | submmulg.h |
. . . . . . 7
β’ π» = (πΊ βΎs π) |
3 | | eqid 2732 |
. . . . . . 7
β’
(+gβπΊ) = (+gβπΊ) |
4 | 2, 3 | ressplusg 17231 |
. . . . . 6
β’ (π β (SubMndβπΊ) β
(+gβπΊ) =
(+gβπ»)) |
5 | 1, 4 | syl 17 |
. . . . 5
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β
(+gβπΊ) =
(+gβπ»)) |
6 | 5 | seqeq2d 13969 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β
seq1((+gβπΊ), (β Γ {π})) = seq1((+gβπ»), (β Γ {π}))) |
7 | 6 | fveq1d 6890 |
. . 3
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β
(seq1((+gβπΊ), (β Γ {π}))βπ) = (seq1((+gβπ»), (β Γ {π}))βπ)) |
8 | | simpr 485 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β π β β) |
9 | | eqid 2732 |
. . . . . . . 8
β’
(BaseβπΊ) =
(BaseβπΊ) |
10 | 9 | submss 18686 |
. . . . . . 7
β’ (π β (SubMndβπΊ) β π β (BaseβπΊ)) |
11 | 10 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β π β (BaseβπΊ)) |
12 | | simp3 1138 |
. . . . . 6
β’ ((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β π β π) |
13 | 11, 12 | sseldd 3982 |
. . . . 5
β’ ((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β π β (BaseβπΊ)) |
14 | 13 | adantr 481 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β π β (BaseβπΊ)) |
15 | | submmulgcl.t |
. . . . 5
β’ β =
(.gβπΊ) |
16 | | eqid 2732 |
. . . . 5
β’
seq1((+gβπΊ), (β Γ {π})) = seq1((+gβπΊ), (β Γ {π})) |
17 | 9, 3, 15, 16 | mulgnn 18952 |
. . . 4
β’ ((π β β β§ π β (BaseβπΊ)) β (π β π) = (seq1((+gβπΊ), (β Γ {π}))βπ)) |
18 | 8, 14, 17 | syl2anc 584 |
. . 3
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β (π β π) = (seq1((+gβπΊ), (β Γ {π}))βπ)) |
19 | 2 | submbas 18691 |
. . . . . . 7
β’ (π β (SubMndβπΊ) β π = (Baseβπ»)) |
20 | 19 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β π = (Baseβπ»)) |
21 | 12, 20 | eleqtrd 2835 |
. . . . 5
β’ ((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β π β (Baseβπ»)) |
22 | 21 | adantr 481 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β π β (Baseβπ»)) |
23 | | eqid 2732 |
. . . . 5
β’
(Baseβπ») =
(Baseβπ») |
24 | | eqid 2732 |
. . . . 5
β’
(+gβπ») = (+gβπ») |
25 | | submmulg.t |
. . . . 5
β’ Β· =
(.gβπ») |
26 | | eqid 2732 |
. . . . 5
β’
seq1((+gβπ»), (β Γ {π})) = seq1((+gβπ»), (β Γ {π})) |
27 | 23, 24, 25, 26 | mulgnn 18952 |
. . . 4
β’ ((π β β β§ π β (Baseβπ»)) β (π Β· π) = (seq1((+gβπ»), (β Γ {π}))βπ)) |
28 | 8, 22, 27 | syl2anc 584 |
. . 3
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β (π Β· π) = (seq1((+gβπ»), (β Γ {π}))βπ)) |
29 | 7, 18, 28 | 3eqtr4d 2782 |
. 2
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π β β) β (π β π) = (π Β· π)) |
30 | | simpl1 1191 |
. . . . 5
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β π β (SubMndβπΊ)) |
31 | | eqid 2732 |
. . . . . 6
β’
(0gβπΊ) = (0gβπΊ) |
32 | 2, 31 | subm0 18692 |
. . . . 5
β’ (π β (SubMndβπΊ) β
(0gβπΊ) =
(0gβπ»)) |
33 | 30, 32 | syl 17 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β (0gβπΊ) = (0gβπ»)) |
34 | 13 | adantr 481 |
. . . . 5
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β π β (BaseβπΊ)) |
35 | 9, 31, 15 | mulg0 18951 |
. . . . 5
β’ (π β (BaseβπΊ) β (0 β π) = (0gβπΊ)) |
36 | 34, 35 | syl 17 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β (0 β π) = (0gβπΊ)) |
37 | 21 | adantr 481 |
. . . . 5
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β π β (Baseβπ»)) |
38 | | eqid 2732 |
. . . . . 6
β’
(0gβπ») = (0gβπ») |
39 | 23, 38, 25 | mulg0 18951 |
. . . . 5
β’ (π β (Baseβπ») β (0 Β· π) = (0gβπ»)) |
40 | 37, 39 | syl 17 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β (0 Β· π) = (0gβπ»)) |
41 | 33, 36, 40 | 3eqtr4d 2782 |
. . 3
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β (0 β π) = (0 Β· π)) |
42 | | simpr 485 |
. . . 4
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β π = 0) |
43 | 42 | oveq1d 7420 |
. . 3
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β (π β π) = (0 β π)) |
44 | 42 | oveq1d 7420 |
. . 3
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β (π Β· π) = (0 Β· π)) |
45 | 41, 43, 44 | 3eqtr4d 2782 |
. 2
β’ (((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β§ π = 0) β (π β π) = (π Β· π)) |
46 | | simp2 1137 |
. . 3
β’ ((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β π β
β0) |
47 | | elnn0 12470 |
. . 3
β’ (π β β0
β (π β β
β¨ π =
0)) |
48 | 46, 47 | sylib 217 |
. 2
β’ ((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β (π β β β¨ π = 0)) |
49 | 29, 45, 48 | mpjaodan 957 |
1
β’ ((π β (SubMndβπΊ) β§ π β β0 β§ π β π) β (π β π) = (π Β· π)) |