MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgfvalALT Structured version   Visualization version   GIF version

Theorem mulgfvalALT 19009
Description: Shorter proof of mulgfval 19008 using ax-rep 5237. (Contributed by Mario Carneiro, 11-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
Assertion
Ref Expression
mulgfvalALT · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
Distinct variable groups:   𝑥, 0 ,𝑛   𝑥,𝐵,𝑛   𝑥, + ,𝑛   𝑥,𝐺,𝑛   𝑥,𝐼,𝑛
Allowed substitution hints:   · (𝑥,𝑛)

Proof of Theorem mulgfvalALT
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2 · = (.g𝐺)
2 eqidd 2731 . . . . 5 (𝑤 = 𝐺 → ℤ = ℤ)
3 fveq2 6861 . . . . . 6 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
4 mulgval.b . . . . . 6 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2783 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
6 fveq2 6861 . . . . . . 7 (𝑤 = 𝐺 → (0g𝑤) = (0g𝐺))
7 mulgval.o . . . . . . 7 0 = (0g𝐺)
86, 7eqtr4di 2783 . . . . . 6 (𝑤 = 𝐺 → (0g𝑤) = 0 )
9 seqex 13975 . . . . . . . 8 seq1((+g𝑤), (ℕ × {𝑥})) ∈ V
109a1i 11 . . . . . . 7 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) ∈ V)
11 id 22 . . . . . . . . . 10 (𝑠 = seq1((+g𝑤), (ℕ × {𝑥})) → 𝑠 = seq1((+g𝑤), (ℕ × {𝑥})))
12 fveq2 6861 . . . . . . . . . . . 12 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
13 mulgval.p . . . . . . . . . . . 12 + = (+g𝐺)
1412, 13eqtr4di 2783 . . . . . . . . . . 11 (𝑤 = 𝐺 → (+g𝑤) = + )
1514seqeq2d 13980 . . . . . . . . . 10 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑥})))
1611, 15sylan9eqr 2787 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑠 = seq1( + , (ℕ × {𝑥})))
1716fveq1d 6863 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠𝑛) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
18 simpl 482 . . . . . . . . . . 11 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑤 = 𝐺)
1918fveq2d 6865 . . . . . . . . . 10 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = (invg𝐺))
20 mulgval.i . . . . . . . . . 10 𝐼 = (invg𝐺)
2119, 20eqtr4di 2783 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = 𝐼)
2216fveq1d 6863 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠‘-𝑛) = (seq1( + , (ℕ × {𝑥}))‘-𝑛))
2321, 22fveq12d 6868 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → ((invg𝑤)‘(𝑠‘-𝑛)) = (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))
2417, 23ifeq12d 4513 . . . . . . 7 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
2510, 24csbied 3901 . . . . . 6 (𝑤 = 𝐺seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
268, 25ifeq12d 4513 . . . . 5 (𝑤 = 𝐺 → if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛)))) = if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
272, 5, 26mpoeq123dv 7467 . . . 4 (𝑤 = 𝐺 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
28 df-mulg 19007 . . . 4 .g = (𝑤 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))))
29 zex 12545 . . . . 5 ℤ ∈ V
304fvexi 6875 . . . . 5 𝐵 ∈ V
3129, 30mpoex 8061 . . . 4 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V
3227, 28, 31fvmpt 6971 . . 3 (𝐺 ∈ V → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
33 fvprc 6853 . . . 4 𝐺 ∈ V → (.g𝐺) = ∅)
34 eqid 2730 . . . . . . 7 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
357fvexi 6875 . . . . . . . 8 0 ∈ V
36 fvex 6874 . . . . . . . . 9 (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ V
37 fvex 6874 . . . . . . . . 9 (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ V
3836, 37ifex 4542 . . . . . . . 8 if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) ∈ V
3935, 38ifex 4542 . . . . . . 7 if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ V
4034, 39fnmpoi 8052 . . . . . 6 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵)
41 fvprc 6853 . . . . . . . . . 10 𝐺 ∈ V → (Base‘𝐺) = ∅)
424, 41eqtrid 2777 . . . . . . . . 9 𝐺 ∈ V → 𝐵 = ∅)
4342xpeq2d 5671 . . . . . . . 8 𝐺 ∈ V → (ℤ × 𝐵) = (ℤ × ∅))
44 xp0 6134 . . . . . . . 8 (ℤ × ∅) = ∅
4543, 44eqtrdi 2781 . . . . . . 7 𝐺 ∈ V → (ℤ × 𝐵) = ∅)
4645fneq2d 6615 . . . . . 6 𝐺 ∈ V → ((𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅))
4740, 46mpbii 233 . . . . 5 𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅)
48 fn0 6652 . . . . 5 ((𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅ ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅)
4947, 48sylib 218 . . . 4 𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅)
5033, 49eqtr4d 2768 . . 3 𝐺 ∈ V → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
5132, 50pm2.61i 182 . 2 (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
521, 51eqtri 2753 1 · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  csb 3865  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110   × cxp 5639   Fn wfn 6509  cfv 6514  cmpo 7392  0cc0 11075  1c1 11076   < clt 11215  -cneg 11413  cn 12193  cz 12536  seqcseq 13973  Basecbs 17186  +gcplusg 17227  0gc0g 17409  invgcminusg 18873  .gcmg 19006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-neg 11415  df-z 12537  df-seq 13974  df-mulg 19007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator