Step | Hyp | Ref
| Expression |
1 | | mulgval.t |
. 2
⊢ · =
(.g‘𝐺) |
2 | | eqidd 2739 |
. . . . 5
⊢ (𝑤 = 𝐺 → ℤ = ℤ) |
3 | | fveq2 6774 |
. . . . . 6
⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) |
4 | | mulgval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
5 | 3, 4 | eqtr4di 2796 |
. . . . 5
⊢ (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵) |
6 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑤 = 𝐺 → (0g‘𝑤) = (0g‘𝐺)) |
7 | | mulgval.o |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑤 = 𝐺 → (0g‘𝑤) = 0 ) |
9 | | seqex 13723 |
. . . . . . . 8
⊢
seq1((+g‘𝑤), (ℕ × {𝑥})) ∈ V |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝑤 = 𝐺 → seq1((+g‘𝑤), (ℕ × {𝑥})) ∈ V) |
11 | | id 22 |
. . . . . . . . . 10
⊢ (𝑠 =
seq1((+g‘𝑤), (ℕ × {𝑥})) → 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) |
12 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐺 → (+g‘𝑤) = (+g‘𝐺)) |
13 | | mulgval.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝐺) |
14 | 12, 13 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐺 → (+g‘𝑤) = + ) |
15 | 14 | seqeq2d 13728 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐺 → seq1((+g‘𝑤), (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑥}))) |
16 | 11, 15 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → 𝑠 = seq1( + , (ℕ × {𝑥}))) |
17 | 16 | fveq1d 6776 |
. . . . . . . 8
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → (𝑠‘𝑛) = (seq1( + , (ℕ × {𝑥}))‘𝑛)) |
18 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → 𝑤 = 𝐺) |
19 | 18 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) →
(invg‘𝑤) =
(invg‘𝐺)) |
20 | | mulgval.i |
. . . . . . . . . 10
⊢ 𝐼 = (invg‘𝐺) |
21 | 19, 20 | eqtr4di 2796 |
. . . . . . . . 9
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) →
(invg‘𝑤) =
𝐼) |
22 | 16 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → (𝑠‘-𝑛) = (seq1( + , (ℕ × {𝑥}))‘-𝑛)) |
23 | 21, 22 | fveq12d 6781 |
. . . . . . . 8
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) →
((invg‘𝑤)‘(𝑠‘-𝑛)) = (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) |
24 | 17, 23 | ifeq12d 4480 |
. . . . . . 7
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) |
25 | 10, 24 | csbied 3870 |
. . . . . 6
⊢ (𝑤 = 𝐺 →
⦋seq1((+g‘𝑤), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) |
26 | 8, 25 | ifeq12d 4480 |
. . . . 5
⊢ (𝑤 = 𝐺 → if(𝑛 = 0, (0g‘𝑤),
⦋seq1((+g‘𝑤), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛)))) = if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |
27 | 2, 5, 26 | mpoeq123dv 7350 |
. . . 4
⊢ (𝑤 = 𝐺 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g‘𝑤),
⦋seq1((+g‘𝑤), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |
28 | | df-mulg 18701 |
. . . 4
⊢
.g = (𝑤
∈ V ↦ (𝑛 ∈
ℤ, 𝑥 ∈
(Base‘𝑤) ↦
if(𝑛 = 0,
(0g‘𝑤),
⦋seq1((+g‘𝑤), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛)))))) |
29 | | zex 12328 |
. . . . 5
⊢ ℤ
∈ V |
30 | 4 | fvexi 6788 |
. . . . 5
⊢ 𝐵 ∈ V |
31 | 29, 30 | mpoex 7920 |
. . . 4
⊢ (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V |
32 | 27, 28, 31 | fvmpt 6875 |
. . 3
⊢ (𝐺 ∈ V →
(.g‘𝐺) =
(𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |
33 | | fvprc 6766 |
. . . 4
⊢ (¬
𝐺 ∈ V →
(.g‘𝐺) =
∅) |
34 | | eqid 2738 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |
35 | 7 | fvexi 6788 |
. . . . . . . 8
⊢ 0 ∈
V |
36 | | fvex 6787 |
. . . . . . . . 9
⊢ (seq1(
+ ,
(ℕ × {𝑥}))‘𝑛) ∈ V |
37 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ V |
38 | 36, 37 | ifex 4509 |
. . . . . . . 8
⊢ if(0 <
𝑛, (seq1( + , (ℕ
× {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) ∈ V |
39 | 35, 38 | ifex 4509 |
. . . . . . 7
⊢ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ V |
40 | 34, 39 | fnmpoi 7910 |
. . . . . 6
⊢ (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵) |
41 | | fvprc 6766 |
. . . . . . . . . 10
⊢ (¬
𝐺 ∈ V →
(Base‘𝐺) =
∅) |
42 | 4, 41 | eqtrid 2790 |
. . . . . . . . 9
⊢ (¬
𝐺 ∈ V → 𝐵 = ∅) |
43 | 42 | xpeq2d 5619 |
. . . . . . . 8
⊢ (¬
𝐺 ∈ V → (ℤ
× 𝐵) = (ℤ
× ∅)) |
44 | | xp0 6061 |
. . . . . . . 8
⊢ (ℤ
× ∅) = ∅ |
45 | 43, 44 | eqtrdi 2794 |
. . . . . . 7
⊢ (¬
𝐺 ∈ V → (ℤ
× 𝐵) =
∅) |
46 | 45 | fneq2d 6527 |
. . . . . 6
⊢ (¬
𝐺 ∈ V → ((𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅)) |
47 | 40, 46 | mpbii 232 |
. . . . 5
⊢ (¬
𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅) |
48 | | fn0 6564 |
. . . . 5
⊢ ((𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅ ↔ (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅) |
49 | 47, 48 | sylib 217 |
. . . 4
⊢ (¬
𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅) |
50 | 33, 49 | eqtr4d 2781 |
. . 3
⊢ (¬
𝐺 ∈ V →
(.g‘𝐺) =
(𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |
51 | 32, 50 | pm2.61i 182 |
. 2
⊢
(.g‘𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |
52 | 1, 51 | eqtri 2766 |
1
⊢ · =
(𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |