MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgfvalALT Structured version   Visualization version   GIF version

Theorem mulgfvalALT 19110
Description: Shorter proof of mulgfval 19109 using ax-rep 5303. (Contributed by Mario Carneiro, 11-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
Assertion
Ref Expression
mulgfvalALT · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
Distinct variable groups:   𝑥, 0 ,𝑛   𝑥,𝐵,𝑛   𝑥, + ,𝑛   𝑥,𝐺,𝑛   𝑥,𝐼,𝑛
Allowed substitution hints:   · (𝑥,𝑛)

Proof of Theorem mulgfvalALT
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2 · = (.g𝐺)
2 eqidd 2741 . . . . 5 (𝑤 = 𝐺 → ℤ = ℤ)
3 fveq2 6920 . . . . . 6 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
4 mulgval.b . . . . . 6 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2798 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
6 fveq2 6920 . . . . . . 7 (𝑤 = 𝐺 → (0g𝑤) = (0g𝐺))
7 mulgval.o . . . . . . 7 0 = (0g𝐺)
86, 7eqtr4di 2798 . . . . . 6 (𝑤 = 𝐺 → (0g𝑤) = 0 )
9 seqex 14054 . . . . . . . 8 seq1((+g𝑤), (ℕ × {𝑥})) ∈ V
109a1i 11 . . . . . . 7 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) ∈ V)
11 id 22 . . . . . . . . . 10 (𝑠 = seq1((+g𝑤), (ℕ × {𝑥})) → 𝑠 = seq1((+g𝑤), (ℕ × {𝑥})))
12 fveq2 6920 . . . . . . . . . . . 12 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
13 mulgval.p . . . . . . . . . . . 12 + = (+g𝐺)
1412, 13eqtr4di 2798 . . . . . . . . . . 11 (𝑤 = 𝐺 → (+g𝑤) = + )
1514seqeq2d 14059 . . . . . . . . . 10 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑥})))
1611, 15sylan9eqr 2802 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑠 = seq1( + , (ℕ × {𝑥})))
1716fveq1d 6922 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠𝑛) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
18 simpl 482 . . . . . . . . . . 11 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑤 = 𝐺)
1918fveq2d 6924 . . . . . . . . . 10 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = (invg𝐺))
20 mulgval.i . . . . . . . . . 10 𝐼 = (invg𝐺)
2119, 20eqtr4di 2798 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = 𝐼)
2216fveq1d 6922 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠‘-𝑛) = (seq1( + , (ℕ × {𝑥}))‘-𝑛))
2321, 22fveq12d 6927 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → ((invg𝑤)‘(𝑠‘-𝑛)) = (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))
2417, 23ifeq12d 4569 . . . . . . 7 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
2510, 24csbied 3959 . . . . . 6 (𝑤 = 𝐺seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
268, 25ifeq12d 4569 . . . . 5 (𝑤 = 𝐺 → if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛)))) = if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
272, 5, 26mpoeq123dv 7525 . . . 4 (𝑤 = 𝐺 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
28 df-mulg 19108 . . . 4 .g = (𝑤 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))))
29 zex 12648 . . . . 5 ℤ ∈ V
304fvexi 6934 . . . . 5 𝐵 ∈ V
3129, 30mpoex 8120 . . . 4 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V
3227, 28, 31fvmpt 7029 . . 3 (𝐺 ∈ V → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
33 fvprc 6912 . . . 4 𝐺 ∈ V → (.g𝐺) = ∅)
34 eqid 2740 . . . . . . 7 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
357fvexi 6934 . . . . . . . 8 0 ∈ V
36 fvex 6933 . . . . . . . . 9 (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ V
37 fvex 6933 . . . . . . . . 9 (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ V
3836, 37ifex 4598 . . . . . . . 8 if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) ∈ V
3935, 38ifex 4598 . . . . . . 7 if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ V
4034, 39fnmpoi 8111 . . . . . 6 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵)
41 fvprc 6912 . . . . . . . . . 10 𝐺 ∈ V → (Base‘𝐺) = ∅)
424, 41eqtrid 2792 . . . . . . . . 9 𝐺 ∈ V → 𝐵 = ∅)
4342xpeq2d 5730 . . . . . . . 8 𝐺 ∈ V → (ℤ × 𝐵) = (ℤ × ∅))
44 xp0 6189 . . . . . . . 8 (ℤ × ∅) = ∅
4543, 44eqtrdi 2796 . . . . . . 7 𝐺 ∈ V → (ℤ × 𝐵) = ∅)
4645fneq2d 6673 . . . . . 6 𝐺 ∈ V → ((𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅))
4740, 46mpbii 233 . . . . 5 𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅)
48 fn0 6711 . . . . 5 ((𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅ ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅)
4947, 48sylib 218 . . . 4 𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅)
5033, 49eqtr4d 2783 . . 3 𝐺 ∈ V → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
5132, 50pm2.61i 182 . 2 (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
521, 51eqtri 2768 1 · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  c0 4352  ifcif 4548  {csn 4648   class class class wbr 5166   × cxp 5698   Fn wfn 6568  cfv 6573  cmpo 7450  0cc0 11184  1c1 11185   < clt 11324  -cneg 11521  cn 12293  cz 12639  seqcseq 14052  Basecbs 17258  +gcplusg 17311  0gc0g 17499  invgcminusg 18974  .gcmg 19107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-neg 11523  df-z 12640  df-seq 14053  df-mulg 19108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator