MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd Structured version   Visualization version   GIF version

Theorem gsumpropd 17877
Description: The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17924 etc. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f (𝜑𝐹𝑉)
gsumpropd.g (𝜑𝐺𝑊)
gsumpropd.h (𝜑𝐻𝑋)
gsumpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
Assertion
Ref Expression
gsumpropd (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))

Proof of Theorem gsumpropd
Dummy variables 𝑎 𝑏 𝑓 𝑚 𝑛 𝑠 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
2 gsumpropd.p . . . . . . . . 9 (𝜑 → (+g𝐺) = (+g𝐻))
32oveqd 7165 . . . . . . . 8 (𝜑 → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
43eqeq1d 2828 . . . . . . 7 (𝜑 → ((𝑠(+g𝐺)𝑡) = 𝑡 ↔ (𝑠(+g𝐻)𝑡) = 𝑡))
52oveqd 7165 . . . . . . . 8 (𝜑 → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
65eqeq1d 2828 . . . . . . 7 (𝜑 → ((𝑡(+g𝐺)𝑠) = 𝑡 ↔ (𝑡(+g𝐻)𝑠) = 𝑡))
74, 6anbi12d 630 . . . . . 6 (𝜑 → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
81, 7raleqbidv 3407 . . . . 5 (𝜑 → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
91, 8rabeqbidv 3491 . . . 4 (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})
109sseq2d 4003 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
11 eqidd 2827 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
122oveqdr 7176 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
1311, 1, 12grpidpropd 17861 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
142seqeq2d 13366 . . . . . . . . . 10 (𝜑 → seq𝑚((+g𝐺), 𝐹) = seq𝑚((+g𝐻), 𝐹))
1514fveq1d 6669 . . . . . . . . 9 (𝜑 → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
1615eqeq2d 2837 . . . . . . . 8 (𝜑 → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
1716anbi2d 628 . . . . . . 7 (𝜑 → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
1817rexbidv 3302 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
1918exbidv 1915 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
2019iotabidv 6337 . . . 4 (𝜑 → (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) = (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
219difeq2d 4103 . . . . . . . . . . . 12 (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
2221imaeq2d 5927 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
2322fveq2d 6671 . . . . . . . . . 10 (𝜑 → (♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))) = (♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))
2423oveq2d 7164 . . . . . . . . 9 (𝜑 → (1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))) = (1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))))
2524f1oeq2d 6608 . . . . . . . 8 (𝜑 → (𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ↔ 𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))
2622f1oeq3d 6609 . . . . . . . 8 (𝜑 → (𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ↔ 𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))
2725, 26bitrd 280 . . . . . . 7 (𝜑 → (𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ↔ 𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))
282seqeq2d 13366 . . . . . . . . 9 (𝜑 → seq1((+g𝐺), (𝐹𝑓)) = seq1((+g𝐻), (𝐹𝑓)))
2928, 23fveq12d 6674 . . . . . . . 8 (𝜑 → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))))
3029eqeq2d 2837 . . . . . . 7 (𝜑 → (𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))) ↔ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))))
3127, 30anbi12d 630 . . . . . 6 (𝜑 → ((𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))) ↔ (𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))))))
3231exbidv 1915 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))) ↔ ∃𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))))))
3332iotabidv 6337 . . . 4 (𝜑 → (℩𝑥𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))))) = (℩𝑥𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))))))
3420, 33ifeq12d 4490 . . 3 (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))))))
3510, 13, 34ifbieq12d 4497 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))))))))
36 eqid 2826 . . 3 (Base‘𝐺) = (Base‘𝐺)
37 eqid 2826 . . 3 (0g𝐺) = (0g𝐺)
38 eqid 2826 . . 3 (+g𝐺) = (+g𝐺)
39 eqid 2826 . . 3 {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}
40 eqidd 2827 . . 3 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
41 gsumpropd.g . . 3 (𝜑𝐺𝑊)
42 gsumpropd.f . . 3 (𝜑𝐹𝑉)
43 eqidd 2827 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
4436, 37, 38, 39, 40, 41, 42, 43gsumvalx 17875 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))))))))
45 eqid 2826 . . 3 (Base‘𝐻) = (Base‘𝐻)
46 eqid 2826 . . 3 (0g𝐻) = (0g𝐻)
47 eqid 2826 . . 3 (+g𝐻) = (+g𝐻)
48 eqid 2826 . . 3 {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}
49 eqidd 2827 . . 3 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})) = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
50 gsumpropd.h . . 3 (𝜑𝐻𝑋)
5145, 46, 47, 48, 49, 50, 42, 43gsumvalx 17875 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))))–1-1-onto→(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))))))))
5235, 44, 513eqtr4d 2871 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wex 1773  wcel 2107  wral 3143  wrex 3144  {crab 3147  Vcvv 3500  cdif 3937  wss 3940  ifcif 4470  ccnv 5553  dom cdm 5554  ran crn 5555  cima 5557  ccom 5558  cio 6310  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7148  1c1 10527  cuz 12232  ...cfz 12882  seqcseq 13359  chash 13680  Basecbs 16473  +gcplusg 16555  0gc0g 16703   Σg cgsu 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-seq 13360  df-0g 16705  df-gsum 16706
This theorem is referenced by:  psropprmul  20323  ply1coe  20381  frlmgsum  20832  matgsum  20962  tsmspropd  22655  gsumsra  30599
  Copyright terms: Public domain W3C validator