Step | Hyp | Ref
| Expression |
1 | | gsumpropd.b |
. . . . 5
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
2 | | gsumpropd.p |
. . . . . . . . 9
⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
3 | 2 | oveqd 7172 |
. . . . . . . 8
⊢ (𝜑 → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
4 | 3 | eqeq1d 2760 |
. . . . . . 7
⊢ (𝜑 → ((𝑠(+g‘𝐺)𝑡) = 𝑡 ↔ (𝑠(+g‘𝐻)𝑡) = 𝑡)) |
5 | 2 | oveqd 7172 |
. . . . . . . 8
⊢ (𝜑 → (𝑡(+g‘𝐺)𝑠) = (𝑡(+g‘𝐻)𝑠)) |
6 | 5 | eqeq1d 2760 |
. . . . . . 7
⊢ (𝜑 → ((𝑡(+g‘𝐺)𝑠) = 𝑡 ↔ (𝑡(+g‘𝐻)𝑠) = 𝑡)) |
7 | 4, 6 | anbi12d 633 |
. . . . . 6
⊢ (𝜑 → (((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡))) |
8 | 1, 7 | raleqbidv 3319 |
. . . . 5
⊢ (𝜑 → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡))) |
9 | 1, 8 | rabeqbidv 3398 |
. . . 4
⊢ (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}) |
10 | 9 | sseq2d 3926 |
. . 3
⊢ (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) |
11 | | eqidd 2759 |
. . . 4
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
12 | 2 | oveqdr 7183 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) = (𝑎(+g‘𝐻)𝑏)) |
13 | 11, 1, 12 | grpidpropd 17943 |
. . 3
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
14 | 2 | seqeq2d 13430 |
. . . . . . . . . 10
⊢ (𝜑 → seq𝑚((+g‘𝐺), 𝐹) = seq𝑚((+g‘𝐻), 𝐹)) |
15 | 14 | fveq1d 6664 |
. . . . . . . . 9
⊢ (𝜑 → (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)) |
16 | 15 | eqeq2d 2769 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
17 | 16 | anbi2d 631 |
. . . . . . 7
⊢ (𝜑 → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
18 | 17 | rexbidv 3221 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
19 | 18 | exbidv 1922 |
. . . . 5
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
20 | 19 | iotabidv 6323 |
. . . 4
⊢ (𝜑 → (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))) = (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
21 | 9 | difeq2d 4030 |
. . . . . . . . . . . 12
⊢ (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) |
22 | 21 | imaeq2d 5905 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))) |
23 | 22 | fveq2d 6666 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) = (♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})))) |
24 | 23 | oveq2d 7171 |
. . . . . . . . 9
⊢ (𝜑 → (1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})))) = (1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))) |
25 | 24 | f1oeq2d 6602 |
. . . . . . . 8
⊢ (𝜑 → (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ↔ 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})))) |
26 | 22 | f1oeq3d 6603 |
. . . . . . . 8
⊢ (𝜑 → (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ↔ 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})))) |
27 | 25, 26 | bitrd 282 |
. . . . . . 7
⊢ (𝜑 → (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ↔ 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})))) |
28 | 2 | seqeq2d 13430 |
. . . . . . . . 9
⊢ (𝜑 →
seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) = seq1((+g‘𝐻), (𝐹 ∘ 𝑓))) |
29 | 28, 23 | fveq12d 6669 |
. . . . . . . 8
⊢ (𝜑 →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})))) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))) |
30 | 29 | eqeq2d 2769 |
. . . . . . 7
⊢ (𝜑 → (𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})))) ↔ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})))))) |
31 | 27, 30 | anbi12d 633 |
. . . . . 6
⊢ (𝜑 → ((𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))) ↔ (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))))) |
32 | 31 | exbidv 1922 |
. . . . 5
⊢ (𝜑 → (∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))) ↔ ∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))))) |
33 | 32 | iotabidv 6323 |
. . . 4
⊢ (𝜑 → (℩𝑥∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})))))) = (℩𝑥∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))))) |
34 | 20, 33 | ifeq12d 4444 |
. . 3
⊢ (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})))))))) |
35 | 10, 13, 34 | ifbieq12d 4451 |
. 2
⊢ (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}, (0g‘𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})))))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}, (0g‘𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))))))) |
36 | | eqid 2758 |
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) |
37 | | eqid 2758 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
38 | | eqid 2758 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
39 | | eqid 2758 |
. . 3
⊢ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} |
40 | | eqidd 2759 |
. . 3
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
41 | | gsumpropd.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
42 | | gsumpropd.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
43 | | eqidd 2759 |
. . 3
⊢ (𝜑 → dom 𝐹 = dom 𝐹) |
44 | 36, 37, 38, 39, 40, 41, 42, 43 | gsumvalx 17957 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}, (0g‘𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))))))))) |
45 | | eqid 2758 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
46 | | eqid 2758 |
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) |
47 | | eqid 2758 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
48 | | eqid 2758 |
. . 3
⊢ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)} |
49 | | eqidd 2759 |
. . 3
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))) |
50 | | gsumpropd.h |
. . 3
⊢ (𝜑 → 𝐻 ∈ 𝑋) |
51 | 45, 46, 47, 48, 49, 50, 42, 43 | gsumvalx 17957 |
. 2
⊢ (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}, (0g‘𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))–1-1-onto→(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))))))))) |
52 | 35, 44, 51 | 3eqtr4d 2803 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |