| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmulgnnd | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.) |
| Ref | Expression |
|---|---|
| ressmulgnnd.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressmulgnnd.2 | ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) |
| ressmulgnnd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ressmulgnnd.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| ressmulgnnd | ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnnd.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nngt0d 12211 | . 2 ⊢ (𝜑 → 0 < 𝑁) |
| 3 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
| 4 | ressmulgnnd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ 𝐴) |
| 6 | ressmulgnnd.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) | |
| 7 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 8 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 9 | 7, 8 | ressbas2 17184 | . . . . . . . . 9 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 10 | 6, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 12 | ressmulgnnd.1 | . . . . . . . . . 10 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 13 | eqcom 2736 | . . . . . . . . . 10 ⊢ (𝐻 = (𝐺 ↾s 𝐴) ↔ (𝐺 ↾s 𝐴) = 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . . 9 ⊢ (𝐺 ↾s 𝐴) = 𝐻 |
| 15 | 14 | fveq2i 6843 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻) |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻)) |
| 17 | 11, 16 | eqtrd 2764 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻)) |
| 18 | 5, 17 | eleqtrd 2830 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻)) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
| 22 | eqid 2729 | . . . . . 6 ⊢ seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) | |
| 23 | 19, 20, 21, 22 | mulgnn 18983 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
| 24 | 3, 18, 23 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
| 25 | fvexd 6855 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝐺) ∈ V) | |
| 26 | 25, 6 | ssexd 5274 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ V) |
| 27 | eqid 2729 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 28 | 12, 27 | ressplusg 17230 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 29 | 26, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| 30 | 29 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → (+g‘𝐻) = (+g‘𝐺)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → (+g‘𝐻) = (+g‘𝐺)) |
| 32 | 31 | seqeq2d 13949 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋}))) |
| 33 | 32 | fveq1d 6842 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 34 | 6, 4 | sseldd 3944 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
| 35 | 34 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺)) |
| 36 | eqid 2729 | . . . . . . 7 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 37 | eqid 2729 | . . . . . . 7 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 38 | 8, 27, 36, 37 | mulgnn 18983 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 39 | 3, 35, 38 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 40 | 39 | eqcomd 2735 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g‘𝐺)𝑋)) |
| 41 | 24, 33, 40 | 3eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 42 | 41 | ex 412 | . 2 ⊢ (𝜑 → (0 < 𝑁 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋))) |
| 43 | 2, 42 | mpd 15 | 1 ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 {csn 4585 class class class wbr 5102 × cxp 5629 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 < clt 11184 ℕcn 12162 seqcseq 13942 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 .gcmg 18975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulg 18976 |
| This theorem is referenced by: ressmulgnn0d 32958 2sqr3minply 33743 aks6d1c6lem4 42134 unitscyglem5 42160 |
| Copyright terms: Public domain | W3C validator |