MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulgnnd Structured version   Visualization version   GIF version

Theorem ressmulgnnd 19109
Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
ressmulgnnd.1 𝐻 = (𝐺s 𝐴)
ressmulgnnd.2 (𝜑𝐴 ⊆ (Base‘𝐺))
ressmulgnnd.3 (𝜑𝑋𝐴)
ressmulgnnd.4 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
ressmulgnnd (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))

Proof of Theorem ressmulgnnd
StepHypRef Expression
1 ressmulgnnd.4 . . 3 (𝜑𝑁 ∈ ℕ)
21nngt0d 12313 . 2 (𝜑 → 0 < 𝑁)
31adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
4 ressmulgnnd.3 . . . . . . 7 (𝜑𝑋𝐴)
54adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝑋𝐴)
6 ressmulgnnd.2 . . . . . . . . 9 (𝜑𝐴 ⊆ (Base‘𝐺))
7 eqid 2735 . . . . . . . . . 10 (𝐺s 𝐴) = (𝐺s 𝐴)
8 eqid 2735 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
97, 8ressbas2 17283 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺s 𝐴)))
106, 9syl 17 . . . . . . . 8 (𝜑𝐴 = (Base‘(𝐺s 𝐴)))
1110adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺s 𝐴)))
12 ressmulgnnd.1 . . . . . . . . . 10 𝐻 = (𝐺s 𝐴)
13 eqcom 2742 . . . . . . . . . 10 (𝐻 = (𝐺s 𝐴) ↔ (𝐺s 𝐴) = 𝐻)
1412, 13mpbi 230 . . . . . . . . 9 (𝐺s 𝐴) = 𝐻
1514fveq2i 6910 . . . . . . . 8 (Base‘(𝐺s 𝐴)) = (Base‘𝐻)
1615a1i 11 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺s 𝐴)) = (Base‘𝐻))
1711, 16eqtrd 2775 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻))
185, 17eleqtrd 2841 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻))
19 eqid 2735 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2735 . . . . . 6 (+g𝐻) = (+g𝐻)
21 eqid 2735 . . . . . 6 (.g𝐻) = (.g𝐻)
22 eqid 2735 . . . . . 6 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
2319, 20, 21, 22mulgnn 19106 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
243, 18, 23syl2anc 584 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
25 fvexd 6922 . . . . . . . . . 10 (𝜑 → (Base‘𝐺) ∈ V)
2625, 6ssexd 5330 . . . . . . . . 9 (𝜑𝐴 ∈ V)
27 eqid 2735 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2812, 27ressplusg 17336 . . . . . . . . 9 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
2926, 28syl 17 . . . . . . . 8 (𝜑 → (+g𝐺) = (+g𝐻))
3029eqcomd 2741 . . . . . . 7 (𝜑 → (+g𝐻) = (+g𝐺))
3130adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → (+g𝐻) = (+g𝐺))
3231seqeq2d 14046 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋})))
3332fveq1d 6909 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
346, 4sseldd 3996 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐺))
3534adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺))
36 eqid 2735 . . . . . . 7 (.g𝐺) = (.g𝐺)
37 eqid 2735 . . . . . . 7 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
388, 27, 36, 37mulgnn 19106 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g𝐺)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
393, 35, 38syl2anc 584 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐺)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
4039eqcomd 2741 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g𝐺)𝑋))
4124, 33, 403eqtrd 2779 . . 3 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
4241ex 412 . 2 (𝜑 → (0 < 𝑁 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋)))
432, 42mpd 15 1 (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {csn 4631   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   < clt 11293  cn 12264  seqcseq 14039  Basecbs 17245  s cress 17274  +gcplusg 17298  .gcmg 19098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulg 19099
This theorem is referenced by:  2sqr3minply  33753  aks6d1c6lem4  42155  unitscyglem5  42181
  Copyright terms: Public domain W3C validator