MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulgnnd Structured version   Visualization version   GIF version

Theorem ressmulgnnd 19096
Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
ressmulgnnd.1 𝐻 = (𝐺s 𝐴)
ressmulgnnd.2 (𝜑𝐴 ⊆ (Base‘𝐺))
ressmulgnnd.3 (𝜑𝑋𝐴)
ressmulgnnd.4 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
ressmulgnnd (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))

Proof of Theorem ressmulgnnd
StepHypRef Expression
1 ressmulgnnd.4 . . 3 (𝜑𝑁 ∈ ℕ)
21nngt0d 12315 . 2 (𝜑 → 0 < 𝑁)
31adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
4 ressmulgnnd.3 . . . . . . 7 (𝜑𝑋𝐴)
54adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝑋𝐴)
6 ressmulgnnd.2 . . . . . . . . 9 (𝜑𝐴 ⊆ (Base‘𝐺))
7 eqid 2737 . . . . . . . . . 10 (𝐺s 𝐴) = (𝐺s 𝐴)
8 eqid 2737 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
97, 8ressbas2 17283 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺s 𝐴)))
106, 9syl 17 . . . . . . . 8 (𝜑𝐴 = (Base‘(𝐺s 𝐴)))
1110adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺s 𝐴)))
12 ressmulgnnd.1 . . . . . . . . . 10 𝐻 = (𝐺s 𝐴)
13 eqcom 2744 . . . . . . . . . 10 (𝐻 = (𝐺s 𝐴) ↔ (𝐺s 𝐴) = 𝐻)
1412, 13mpbi 230 . . . . . . . . 9 (𝐺s 𝐴) = 𝐻
1514fveq2i 6909 . . . . . . . 8 (Base‘(𝐺s 𝐴)) = (Base‘𝐻)
1615a1i 11 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺s 𝐴)) = (Base‘𝐻))
1711, 16eqtrd 2777 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻))
185, 17eleqtrd 2843 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻))
19 eqid 2737 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2737 . . . . . 6 (+g𝐻) = (+g𝐻)
21 eqid 2737 . . . . . 6 (.g𝐻) = (.g𝐻)
22 eqid 2737 . . . . . 6 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
2319, 20, 21, 22mulgnn 19093 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
243, 18, 23syl2anc 584 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
25 fvexd 6921 . . . . . . . . . 10 (𝜑 → (Base‘𝐺) ∈ V)
2625, 6ssexd 5324 . . . . . . . . 9 (𝜑𝐴 ∈ V)
27 eqid 2737 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2812, 27ressplusg 17334 . . . . . . . . 9 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
2926, 28syl 17 . . . . . . . 8 (𝜑 → (+g𝐺) = (+g𝐻))
3029eqcomd 2743 . . . . . . 7 (𝜑 → (+g𝐻) = (+g𝐺))
3130adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → (+g𝐻) = (+g𝐺))
3231seqeq2d 14049 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋})))
3332fveq1d 6908 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
346, 4sseldd 3984 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐺))
3534adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺))
36 eqid 2737 . . . . . . 7 (.g𝐺) = (.g𝐺)
37 eqid 2737 . . . . . . 7 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
388, 27, 36, 37mulgnn 19093 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g𝐺)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
393, 35, 38syl2anc 584 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐺)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
4039eqcomd 2743 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g𝐺)𝑋))
4124, 33, 403eqtrd 2781 . . 3 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
4241ex 412 . 2 (𝜑 → (0 < 𝑁 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋)))
432, 42mpd 15 1 (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  {csn 4626   class class class wbr 5143   × cxp 5683  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   < clt 11295  cn 12266  seqcseq 14042  Basecbs 17247  s cress 17274  +gcplusg 17297  .gcmg 19085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulg 19086
This theorem is referenced by:  2sqr3minply  33791  aks6d1c6lem4  42174  unitscyglem5  42200
  Copyright terms: Public domain W3C validator