| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmulgnnd | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.) |
| Ref | Expression |
|---|---|
| ressmulgnnd.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressmulgnnd.2 | ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) |
| ressmulgnnd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ressmulgnnd.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| ressmulgnnd | ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnnd.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nngt0d 12289 | . 2 ⊢ (𝜑 → 0 < 𝑁) |
| 3 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
| 4 | ressmulgnnd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ 𝐴) |
| 6 | ressmulgnnd.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) | |
| 7 | eqid 2735 | . . . . . . . . . 10 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 8 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 9 | 7, 8 | ressbas2 17259 | . . . . . . . . 9 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 10 | 6, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 12 | ressmulgnnd.1 | . . . . . . . . . 10 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 13 | eqcom 2742 | . . . . . . . . . 10 ⊢ (𝐻 = (𝐺 ↾s 𝐴) ↔ (𝐺 ↾s 𝐴) = 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . . 9 ⊢ (𝐺 ↾s 𝐴) = 𝐻 |
| 15 | 14 | fveq2i 6879 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻) |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻)) |
| 17 | 11, 16 | eqtrd 2770 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻)) |
| 18 | 5, 17 | eleqtrd 2836 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻)) |
| 19 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 20 | eqid 2735 | . . . . . 6 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 21 | eqid 2735 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
| 22 | eqid 2735 | . . . . . 6 ⊢ seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) | |
| 23 | 19, 20, 21, 22 | mulgnn 19058 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
| 24 | 3, 18, 23 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
| 25 | fvexd 6891 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝐺) ∈ V) | |
| 26 | 25, 6 | ssexd 5294 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ V) |
| 27 | eqid 2735 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 28 | 12, 27 | ressplusg 17305 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 29 | 26, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| 30 | 29 | eqcomd 2741 | . . . . . . 7 ⊢ (𝜑 → (+g‘𝐻) = (+g‘𝐺)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → (+g‘𝐻) = (+g‘𝐺)) |
| 32 | 31 | seqeq2d 14026 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋}))) |
| 33 | 32 | fveq1d 6878 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 34 | 6, 4 | sseldd 3959 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
| 35 | 34 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺)) |
| 36 | eqid 2735 | . . . . . . 7 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 37 | eqid 2735 | . . . . . . 7 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 38 | 8, 27, 36, 37 | mulgnn 19058 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 39 | 3, 35, 38 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 40 | 39 | eqcomd 2741 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g‘𝐺)𝑋)) |
| 41 | 24, 33, 40 | 3eqtrd 2774 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 42 | 41 | ex 412 | . 2 ⊢ (𝜑 → (0 < 𝑁 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋))) |
| 43 | 2, 42 | mpd 15 | 1 ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {csn 4601 class class class wbr 5119 × cxp 5652 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 < clt 11269 ℕcn 12240 seqcseq 14019 Basecbs 17228 ↾s cress 17251 +gcplusg 17271 .gcmg 19050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulg 19051 |
| This theorem is referenced by: ressmulgnn0d 33039 2sqr3minply 33814 aks6d1c6lem4 42186 unitscyglem5 42212 |
| Copyright terms: Public domain | W3C validator |