| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmulgnnd | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.) |
| Ref | Expression |
|---|---|
| ressmulgnnd.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressmulgnnd.2 | ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) |
| ressmulgnnd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ressmulgnnd.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| ressmulgnnd | ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnnd.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nngt0d 12235 | . 2 ⊢ (𝜑 → 0 < 𝑁) |
| 3 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
| 4 | ressmulgnnd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ 𝐴) |
| 6 | ressmulgnnd.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) | |
| 7 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 8 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 9 | 7, 8 | ressbas2 17208 | . . . . . . . . 9 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 10 | 6, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 12 | ressmulgnnd.1 | . . . . . . . . . 10 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 13 | eqcom 2736 | . . . . . . . . . 10 ⊢ (𝐻 = (𝐺 ↾s 𝐴) ↔ (𝐺 ↾s 𝐴) = 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . . 9 ⊢ (𝐺 ↾s 𝐴) = 𝐻 |
| 15 | 14 | fveq2i 6861 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻) |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻)) |
| 17 | 11, 16 | eqtrd 2764 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻)) |
| 18 | 5, 17 | eleqtrd 2830 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻)) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
| 22 | eqid 2729 | . . . . . 6 ⊢ seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) | |
| 23 | 19, 20, 21, 22 | mulgnn 19007 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
| 24 | 3, 18, 23 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
| 25 | fvexd 6873 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝐺) ∈ V) | |
| 26 | 25, 6 | ssexd 5279 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ V) |
| 27 | eqid 2729 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 28 | 12, 27 | ressplusg 17254 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 29 | 26, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| 30 | 29 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → (+g‘𝐻) = (+g‘𝐺)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → (+g‘𝐻) = (+g‘𝐺)) |
| 32 | 31 | seqeq2d 13973 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋}))) |
| 33 | 32 | fveq1d 6860 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 34 | 6, 4 | sseldd 3947 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
| 35 | 34 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺)) |
| 36 | eqid 2729 | . . . . . . 7 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 37 | eqid 2729 | . . . . . . 7 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 38 | 8, 27, 36, 37 | mulgnn 19007 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 39 | 3, 35, 38 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 40 | 39 | eqcomd 2735 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g‘𝐺)𝑋)) |
| 41 | 24, 33, 40 | 3eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 42 | 41 | ex 412 | . 2 ⊢ (𝜑 → (0 < 𝑁 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋))) |
| 43 | 2, 42 | mpd 15 | 1 ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 < clt 11208 ℕcn 12186 seqcseq 13966 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 .gcmg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulg 19000 |
| This theorem is referenced by: ressmulgnn0d 32985 2sqr3minply 33770 aks6d1c6lem4 42161 unitscyglem5 42187 |
| Copyright terms: Public domain | W3C validator |