| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmulgnnd | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.) |
| Ref | Expression |
|---|---|
| ressmulgnnd.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressmulgnnd.2 | ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) |
| ressmulgnnd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ressmulgnnd.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| ressmulgnnd | ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnnd.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nngt0d 12169 | . 2 ⊢ (𝜑 → 0 < 𝑁) |
| 3 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
| 4 | ressmulgnnd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ 𝐴) |
| 6 | ressmulgnnd.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) | |
| 7 | eqid 2731 | . . . . . . . . . 10 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 8 | eqid 2731 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 9 | 7, 8 | ressbas2 17144 | . . . . . . . . 9 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 10 | 6, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
| 12 | ressmulgnnd.1 | . . . . . . . . . 10 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 13 | eqcom 2738 | . . . . . . . . . 10 ⊢ (𝐻 = (𝐺 ↾s 𝐴) ↔ (𝐺 ↾s 𝐴) = 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . . 9 ⊢ (𝐺 ↾s 𝐴) = 𝐻 |
| 15 | 14 | fveq2i 6820 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻) |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻)) |
| 17 | 11, 16 | eqtrd 2766 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻)) |
| 18 | 5, 17 | eleqtrd 2833 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻)) |
| 19 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 20 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 21 | eqid 2731 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
| 22 | eqid 2731 | . . . . . 6 ⊢ seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) | |
| 23 | 19, 20, 21, 22 | mulgnn 18983 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
| 24 | 3, 18, 23 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
| 25 | fvexd 6832 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝐺) ∈ V) | |
| 26 | 25, 6 | ssexd 5257 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ V) |
| 27 | eqid 2731 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 28 | 12, 27 | ressplusg 17190 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 29 | 26, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| 30 | 29 | eqcomd 2737 | . . . . . . 7 ⊢ (𝜑 → (+g‘𝐻) = (+g‘𝐺)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → (+g‘𝐻) = (+g‘𝐺)) |
| 32 | 31 | seqeq2d 13910 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋}))) |
| 33 | 32 | fveq1d 6819 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 34 | 6, 4 | sseldd 3930 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
| 35 | 34 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺)) |
| 36 | eqid 2731 | . . . . . . 7 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 37 | eqid 2731 | . . . . . . 7 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 38 | 8, 27, 36, 37 | mulgnn 18983 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 39 | 3, 35, 38 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
| 40 | 39 | eqcomd 2737 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g‘𝐺)𝑋)) |
| 41 | 24, 33, 40 | 3eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| 42 | 41 | ex 412 | . 2 ⊢ (𝜑 → (0 < 𝑁 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋))) |
| 43 | 2, 42 | mpd 15 | 1 ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 {csn 4571 class class class wbr 5086 × cxp 5609 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 < clt 11141 ℕcn 12120 seqcseq 13903 Basecbs 17115 ↾s cress 17136 +gcplusg 17156 .gcmg 18975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulg 18976 |
| This theorem is referenced by: ressmulgnn0d 33017 2sqr3minply 33785 aks6d1c6lem4 42206 unitscyglem5 42232 |
| Copyright terms: Public domain | W3C validator |