![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressmulgnnd | Structured version Visualization version GIF version |
Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.) |
Ref | Expression |
---|---|
ressmulgnnd.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressmulgnnd.2 | ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) |
ressmulgnnd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ressmulgnnd.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
ressmulgnnd | ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmulgnnd.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | 1 | nngt0d 12304 | . 2 ⊢ (𝜑 → 0 < 𝑁) |
3 | 1 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
4 | ressmulgnnd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
5 | 4 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ 𝐴) |
6 | ressmulgnnd.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) | |
7 | eqid 2726 | . . . . . . . . . 10 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
8 | eqid 2726 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
9 | 7, 8 | ressbas2 17243 | . . . . . . . . 9 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
10 | 6, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
11 | 10 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺 ↾s 𝐴))) |
12 | ressmulgnnd.1 | . . . . . . . . . 10 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
13 | eqcom 2733 | . . . . . . . . . 10 ⊢ (𝐻 = (𝐺 ↾s 𝐴) ↔ (𝐺 ↾s 𝐴) = 𝐻) | |
14 | 12, 13 | mpbi 229 | . . . . . . . . 9 ⊢ (𝐺 ↾s 𝐴) = 𝐻 |
15 | 14 | fveq2i 6893 | . . . . . . . 8 ⊢ (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻) |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺 ↾s 𝐴)) = (Base‘𝐻)) |
17 | 11, 16 | eqtrd 2766 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻)) |
18 | 5, 17 | eleqtrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻)) |
19 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
20 | eqid 2726 | . . . . . 6 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
21 | eqid 2726 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
22 | eqid 2726 | . . . . . 6 ⊢ seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) | |
23 | 19, 20, 21, 22 | mulgnn 19062 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
24 | 3, 18, 23 | syl2anc 582 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
25 | fvexd 6905 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝐺) ∈ V) | |
26 | 25, 6 | ssexd 5319 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ V) |
27 | eqid 2726 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
28 | 12, 27 | ressplusg 17296 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
29 | 26, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
30 | 29 | eqcomd 2732 | . . . . . . 7 ⊢ (𝜑 → (+g‘𝐻) = (+g‘𝐺)) |
31 | 30 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → (+g‘𝐻) = (+g‘𝐺)) |
32 | 31 | seqeq2d 14019 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋}))) |
33 | 32 | fveq1d 6892 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
34 | 6, 4 | sseldd 3979 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) |
35 | 34 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺)) |
36 | eqid 2726 | . . . . . . 7 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
37 | eqid 2726 | . . . . . . 7 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
38 | 8, 27, 36, 37 | mulgnn 19062 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
39 | 3, 35, 38 | syl2anc 582 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐺)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
40 | 39 | eqcomd 2732 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑁) → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g‘𝐺)𝑋)) |
41 | 24, 33, 40 | 3eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
42 | 41 | ex 411 | . 2 ⊢ (𝜑 → (0 < 𝑁 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋))) |
43 | 2, 42 | mpd 15 | 1 ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3946 {csn 4623 class class class wbr 5143 × cxp 5670 ‘cfv 6543 (class class class)co 7413 0cc0 11146 1c1 11147 < clt 11286 ℕcn 12255 seqcseq 14012 Basecbs 17205 ↾s cress 17234 +gcplusg 17258 .gcmg 19054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-n0 12516 df-z 12602 df-uz 12866 df-seq 14013 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulg 19055 |
This theorem is referenced by: 2sqr3minply 33617 aks6d1c6lem4 41882 |
Copyright terms: Public domain | W3C validator |