MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulgnnd Structured version   Visualization version   GIF version

Theorem ressmulgnnd 18986
Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
ressmulgnnd.1 𝐻 = (𝐺s 𝐴)
ressmulgnnd.2 (𝜑𝐴 ⊆ (Base‘𝐺))
ressmulgnnd.3 (𝜑𝑋𝐴)
ressmulgnnd.4 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
ressmulgnnd (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))

Proof of Theorem ressmulgnnd
StepHypRef Expression
1 ressmulgnnd.4 . . 3 (𝜑𝑁 ∈ ℕ)
21nngt0d 12169 . 2 (𝜑 → 0 < 𝑁)
31adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
4 ressmulgnnd.3 . . . . . . 7 (𝜑𝑋𝐴)
54adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝑋𝐴)
6 ressmulgnnd.2 . . . . . . . . 9 (𝜑𝐴 ⊆ (Base‘𝐺))
7 eqid 2731 . . . . . . . . . 10 (𝐺s 𝐴) = (𝐺s 𝐴)
8 eqid 2731 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
97, 8ressbas2 17144 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺s 𝐴)))
106, 9syl 17 . . . . . . . 8 (𝜑𝐴 = (Base‘(𝐺s 𝐴)))
1110adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺s 𝐴)))
12 ressmulgnnd.1 . . . . . . . . . 10 𝐻 = (𝐺s 𝐴)
13 eqcom 2738 . . . . . . . . . 10 (𝐻 = (𝐺s 𝐴) ↔ (𝐺s 𝐴) = 𝐻)
1412, 13mpbi 230 . . . . . . . . 9 (𝐺s 𝐴) = 𝐻
1514fveq2i 6820 . . . . . . . 8 (Base‘(𝐺s 𝐴)) = (Base‘𝐻)
1615a1i 11 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺s 𝐴)) = (Base‘𝐻))
1711, 16eqtrd 2766 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻))
185, 17eleqtrd 2833 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻))
19 eqid 2731 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2731 . . . . . 6 (+g𝐻) = (+g𝐻)
21 eqid 2731 . . . . . 6 (.g𝐻) = (.g𝐻)
22 eqid 2731 . . . . . 6 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
2319, 20, 21, 22mulgnn 18983 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
243, 18, 23syl2anc 584 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
25 fvexd 6832 . . . . . . . . . 10 (𝜑 → (Base‘𝐺) ∈ V)
2625, 6ssexd 5257 . . . . . . . . 9 (𝜑𝐴 ∈ V)
27 eqid 2731 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2812, 27ressplusg 17190 . . . . . . . . 9 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
2926, 28syl 17 . . . . . . . 8 (𝜑 → (+g𝐺) = (+g𝐻))
3029eqcomd 2737 . . . . . . 7 (𝜑 → (+g𝐻) = (+g𝐺))
3130adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → (+g𝐻) = (+g𝐺))
3231seqeq2d 13910 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋})))
3332fveq1d 6819 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
346, 4sseldd 3930 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐺))
3534adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺))
36 eqid 2731 . . . . . . 7 (.g𝐺) = (.g𝐺)
37 eqid 2731 . . . . . . 7 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
388, 27, 36, 37mulgnn 18983 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g𝐺)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
393, 35, 38syl2anc 584 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐺)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
4039eqcomd 2737 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g𝐺)𝑋))
4124, 33, 403eqtrd 2770 . . 3 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
4241ex 412 . 2 (𝜑 → (0 < 𝑁 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋)))
432, 42mpd 15 1 (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  {csn 4571   class class class wbr 5086   × cxp 5609  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002   < clt 11141  cn 12120  seqcseq 13903  Basecbs 17115  s cress 17136  +gcplusg 17156  .gcmg 18975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-seq 13904  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulg 18976
This theorem is referenced by:  ressmulgnn0d  33017  2sqr3minply  33785  aks6d1c6lem4  42206  unitscyglem5  42232
  Copyright terms: Public domain W3C validator