MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulgnnd Structured version   Visualization version   GIF version

Theorem ressmulgnnd 19118
Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
ressmulgnnd.1 𝐻 = (𝐺s 𝐴)
ressmulgnnd.2 (𝜑𝐴 ⊆ (Base‘𝐺))
ressmulgnnd.3 (𝜑𝑋𝐴)
ressmulgnnd.4 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
ressmulgnnd (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))

Proof of Theorem ressmulgnnd
StepHypRef Expression
1 ressmulgnnd.4 . . 3 (𝜑𝑁 ∈ ℕ)
21nngt0d 12342 . 2 (𝜑 → 0 < 𝑁)
31adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
4 ressmulgnnd.3 . . . . . . 7 (𝜑𝑋𝐴)
54adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝑋𝐴)
6 ressmulgnnd.2 . . . . . . . . 9 (𝜑𝐴 ⊆ (Base‘𝐺))
7 eqid 2740 . . . . . . . . . 10 (𝐺s 𝐴) = (𝐺s 𝐴)
8 eqid 2740 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
97, 8ressbas2 17296 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘(𝐺s 𝐴)))
106, 9syl 17 . . . . . . . 8 (𝜑𝐴 = (Base‘(𝐺s 𝐴)))
1110adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘(𝐺s 𝐴)))
12 ressmulgnnd.1 . . . . . . . . . 10 𝐻 = (𝐺s 𝐴)
13 eqcom 2747 . . . . . . . . . 10 (𝐻 = (𝐺s 𝐴) ↔ (𝐺s 𝐴) = 𝐻)
1412, 13mpbi 230 . . . . . . . . 9 (𝐺s 𝐴) = 𝐻
1514fveq2i 6923 . . . . . . . 8 (Base‘(𝐺s 𝐴)) = (Base‘𝐻)
1615a1i 11 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (Base‘(𝐺s 𝐴)) = (Base‘𝐻))
1711, 16eqtrd 2780 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝐴 = (Base‘𝐻))
185, 17eleqtrd 2846 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐻))
19 eqid 2740 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2740 . . . . . 6 (+g𝐻) = (+g𝐻)
21 eqid 2740 . . . . . 6 (.g𝐻) = (.g𝐻)
22 eqid 2740 . . . . . 6 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
2319, 20, 21, 22mulgnn 19115 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
243, 18, 23syl2anc 583 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
25 fvexd 6935 . . . . . . . . . 10 (𝜑 → (Base‘𝐺) ∈ V)
2625, 6ssexd 5342 . . . . . . . . 9 (𝜑𝐴 ∈ V)
27 eqid 2740 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2812, 27ressplusg 17349 . . . . . . . . 9 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
2926, 28syl 17 . . . . . . . 8 (𝜑 → (+g𝐺) = (+g𝐻))
3029eqcomd 2746 . . . . . . 7 (𝜑 → (+g𝐻) = (+g𝐺))
3130adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → (+g𝐻) = (+g𝐺))
3231seqeq2d 14059 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋})))
3332fveq1d 6922 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
346, 4sseldd 4009 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐺))
3534adantr 480 . . . . . 6 ((𝜑 ∧ 0 < 𝑁) → 𝑋 ∈ (Base‘𝐺))
36 eqid 2740 . . . . . . 7 (.g𝐺) = (.g𝐺)
37 eqid 2740 . . . . . . 7 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
388, 27, 36, 37mulgnn 19115 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁(.g𝐺)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
393, 35, 38syl2anc 583 . . . . 5 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐺)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
4039eqcomd 2746 . . . 4 ((𝜑 ∧ 0 < 𝑁) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (𝑁(.g𝐺)𝑋))
4124, 33, 403eqtrd 2784 . . 3 ((𝜑 ∧ 0 < 𝑁) → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
4241ex 412 . 2 (𝜑 → (0 < 𝑁 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋)))
432, 42mpd 15 1 (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   < clt 11324  cn 12293  seqcseq 14052  Basecbs 17258  s cress 17287  +gcplusg 17311  .gcmg 19107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulg 19108
This theorem is referenced by:  2sqr3minply  33738  aks6d1c6lem4  42130  unitscyglem5  42156
  Copyright terms: Public domain W3C validator