MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfval Structured version   Visualization version   GIF version

Theorem dvnfval 24991
Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
dvnfval.1 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
Assertion
Ref Expression
dvnfval ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dvnfval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvn 24937 . . 3 D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})))
21a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓}))))
3 simprl 767 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑠 = 𝑆)
43oveq1d 7270 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑠 D 𝑥) = (𝑆 D 𝑥))
54mpteq2dv 5172 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥)))
6 dvnfval.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
75, 6eqtr4di 2797 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = 𝐺)
87coeq1d 5759 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ) = (𝐺 ∘ 1st ))
98seqeq2d 13656 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})))
10 simprr 769 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110sneqd 4570 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → {𝑓} = {𝐹})
1211xpeq2d 5610 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 × {𝑓}) = (ℕ0 × {𝐹}))
1312seqeq3d 13657 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
149, 13eqtrd 2778 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
15 simpr 484 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
1615oveq2d 7271 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
17 simpl 482 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
18 cnex 10883 . . . 4 ℂ ∈ V
1918elpw2 5264 . . 3 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
2017, 19sylibr 233 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
21 simpr 484 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
22 seqex 13651 . . 3 seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V
2322a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V)
242, 14, 16, 20, 21, 23ovmpodx 7402 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584  (class class class)co 7255  cmpo 7257  1st c1st 7802  pm cpm 8574  cc 10800  0cc0 10802  0cn0 12163  seqcseq 13649   D cdv 24932   D𝑛 cdvn 24933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seq 13650  df-dvn 24937
This theorem is referenced by:  dvnff  24992  dvn0  24993  dvnp1  24994
  Copyright terms: Public domain W3C validator