MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfval Structured version   Visualization version   GIF version

Theorem dvnfval 25831
Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
dvnfval.1 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
Assertion
Ref Expression
dvnfval ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dvnfval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvn 25776 . . 3 D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})))
21a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓}))))
3 simprl 770 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑠 = 𝑆)
43oveq1d 7405 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑠 D 𝑥) = (𝑆 D 𝑥))
54mpteq2dv 5204 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥)))
6 dvnfval.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
75, 6eqtr4di 2783 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = 𝐺)
87coeq1d 5828 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ) = (𝐺 ∘ 1st ))
98seqeq2d 13980 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})))
10 simprr 772 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110sneqd 4604 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → {𝑓} = {𝐹})
1211xpeq2d 5671 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 × {𝑓}) = (ℕ0 × {𝐹}))
1312seqeq3d 13981 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
149, 13eqtrd 2765 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
15 simpr 484 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
1615oveq2d 7406 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
17 simpl 482 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
18 cnex 11156 . . . 4 ℂ ∈ V
1918elpw2 5292 . . 3 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
2017, 19sylibr 234 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
21 simpr 484 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
22 seqex 13975 . . 3 seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V
2322a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V)
242, 14, 16, 20, 21, 23ovmpodx 7543 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566  {csn 4592  cmpt 5191   × cxp 5639  ccom 5645  (class class class)co 7390  cmpo 7392  1st c1st 7969  pm cpm 8803  cc 11073  0cc0 11075  0cn0 12449  seqcseq 13973   D cdv 25771   D𝑛 cdvn 25772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974  df-dvn 25776
This theorem is referenced by:  dvnff  25832  dvn0  25833  dvnp1  25834
  Copyright terms: Public domain W3C validator