| Step | Hyp | Ref
| Expression |
| 1 | | df-dvn 25821 |
. . 3
⊢
D𝑛 = (𝑠
∈ 𝒫 ℂ, 𝑓
∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ),
(ℕ0 × {𝑓}))) |
| 2 | 1 | a1i 11 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ),
(ℕ0 × {𝑓})))) |
| 3 | | simprl 770 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → 𝑠 = 𝑆) |
| 4 | 3 | oveq1d 7420 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑠 D 𝑥) = (𝑆 D 𝑥)) |
| 5 | 4 | mpteq2dv 5215 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥))) |
| 6 | | dvnfval.1 |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥)) |
| 7 | 5, 6 | eqtr4di 2788 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = 𝐺) |
| 8 | 7 | coeq1d 5841 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ) = (𝐺 ∘ 1st
)) |
| 9 | 8 | seqeq2d 14026 |
. . 3
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ),
(ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ),
(ℕ0 × {𝑓}))) |
| 10 | | simprr 772 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
| 11 | 10 | sneqd 4613 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → {𝑓} = {𝐹}) |
| 12 | 11 | xpeq2d 5684 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (ℕ0 ×
{𝑓}) = (ℕ0
× {𝐹})) |
| 13 | 12 | seqeq3d 14027 |
. . 3
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → seq0((𝐺 ∘ 1st ),
(ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ),
(ℕ0 × {𝐹}))) |
| 14 | 9, 13 | eqtrd 2770 |
. 2
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ),
(ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ),
(ℕ0 × {𝐹}))) |
| 15 | | simpr 484 |
. . 3
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
| 16 | 15 | oveq2d 7421 |
. 2
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm
𝑆)) |
| 17 | | simpl 482 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ 𝑆 ⊆
ℂ) |
| 18 | | cnex 11210 |
. . . 4
⊢ ℂ
∈ V |
| 19 | 18 | elpw2 5304 |
. . 3
⊢ (𝑆 ∈ 𝒫 ℂ ↔
𝑆 ⊆
ℂ) |
| 20 | 17, 19 | sylibr 234 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ 𝑆 ∈ 𝒫
ℂ) |
| 21 | | simpr 484 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ 𝐹 ∈ (ℂ
↑pm 𝑆)) |
| 22 | | seqex 14021 |
. . 3
⊢
seq0((𝐺 ∘
1st ), (ℕ0 × {𝐹})) ∈ V |
| 23 | 22 | a1i 11 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ seq0((𝐺 ∘
1st ), (ℕ0 × {𝐹})) ∈ V) |
| 24 | 2, 14, 16, 20, 21, 23 | ovmpodx 7558 |
1
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆))
→ (𝑆
D𝑛 𝐹) =
seq0((𝐺 ∘
1st ), (ℕ0 × {𝐹}))) |