MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfval Structured version   Visualization version   GIF version

Theorem dvnfval 25851
Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
dvnfval.1 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
Assertion
Ref Expression
dvnfval ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dvnfval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvn 25796 . . 3 D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})))
21a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓}))))
3 simprl 770 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑠 = 𝑆)
43oveq1d 7361 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑠 D 𝑥) = (𝑆 D 𝑥))
54mpteq2dv 5183 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥)))
6 dvnfval.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
75, 6eqtr4di 2784 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = 𝐺)
87coeq1d 5800 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ) = (𝐺 ∘ 1st ))
98seqeq2d 13915 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})))
10 simprr 772 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110sneqd 4585 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → {𝑓} = {𝐹})
1211xpeq2d 5644 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 × {𝑓}) = (ℕ0 × {𝐹}))
1312seqeq3d 13916 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
149, 13eqtrd 2766 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
15 simpr 484 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
1615oveq2d 7362 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
17 simpl 482 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
18 cnex 11087 . . . 4 ℂ ∈ V
1918elpw2 5270 . . 3 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
2017, 19sylibr 234 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
21 simpr 484 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
22 seqex 13910 . . 3 seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V
2322a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V)
242, 14, 16, 20, 21, 23ovmpodx 7497 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  𝒫 cpw 4547  {csn 4573  cmpt 5170   × cxp 5612  ccom 5618  (class class class)co 7346  cmpo 7348  1st c1st 7919  pm cpm 8751  cc 11004  0cc0 11006  0cn0 12381  seqcseq 13908   D cdv 25791   D𝑛 cdvn 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seq 13909  df-dvn 25796
This theorem is referenced by:  dvnff  25852  dvn0  25853  dvnp1  25854
  Copyright terms: Public domain W3C validator