| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . 3
⊢ (𝑎 = ∅ → (𝑄‘𝑎) = (𝑄‘∅)) |
| 2 | | id 22 |
. . . 4
⊢ (𝑎 = ∅ → 𝑎 = ∅) |
| 3 | | 2fveq3 6911 |
. . . 4
⊢ (𝑎 = ∅ →
(2nd ‘(𝑄‘𝑎)) = (2nd ‘(𝑄‘∅))) |
| 4 | 2, 3 | opeq12d 4881 |
. . 3
⊢ (𝑎 = ∅ → 〈𝑎, (2nd ‘(𝑄‘𝑎))〉 = 〈∅, (2nd
‘(𝑄‘∅))〉) |
| 5 | 1, 4 | eqeq12d 2753 |
. 2
⊢ (𝑎 = ∅ → ((𝑄‘𝑎) = 〈𝑎, (2nd ‘(𝑄‘𝑎))〉 ↔ (𝑄‘∅) = 〈∅,
(2nd ‘(𝑄‘∅))〉)) |
| 6 | | fveq2 6906 |
. . 3
⊢ (𝑎 = 𝑏 → (𝑄‘𝑎) = (𝑄‘𝑏)) |
| 7 | | id 22 |
. . . 4
⊢ (𝑎 = 𝑏 → 𝑎 = 𝑏) |
| 8 | | 2fveq3 6911 |
. . . 4
⊢ (𝑎 = 𝑏 → (2nd ‘(𝑄‘𝑎)) = (2nd ‘(𝑄‘𝑏))) |
| 9 | 7, 8 | opeq12d 4881 |
. . 3
⊢ (𝑎 = 𝑏 → 〈𝑎, (2nd ‘(𝑄‘𝑎))〉 = 〈𝑏, (2nd ‘(𝑄‘𝑏))〉) |
| 10 | 6, 9 | eqeq12d 2753 |
. 2
⊢ (𝑎 = 𝑏 → ((𝑄‘𝑎) = 〈𝑎, (2nd ‘(𝑄‘𝑎))〉 ↔ (𝑄‘𝑏) = 〈𝑏, (2nd ‘(𝑄‘𝑏))〉)) |
| 11 | | fveq2 6906 |
. . 3
⊢ (𝑎 = suc 𝑏 → (𝑄‘𝑎) = (𝑄‘suc 𝑏)) |
| 12 | | id 22 |
. . . 4
⊢ (𝑎 = suc 𝑏 → 𝑎 = suc 𝑏) |
| 13 | | 2fveq3 6911 |
. . . 4
⊢ (𝑎 = suc 𝑏 → (2nd ‘(𝑄‘𝑎)) = (2nd ‘(𝑄‘suc 𝑏))) |
| 14 | 12, 13 | opeq12d 4881 |
. . 3
⊢ (𝑎 = suc 𝑏 → 〈𝑎, (2nd ‘(𝑄‘𝑎))〉 = 〈suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))〉) |
| 15 | 11, 14 | eqeq12d 2753 |
. 2
⊢ (𝑎 = suc 𝑏 → ((𝑄‘𝑎) = 〈𝑎, (2nd ‘(𝑄‘𝑎))〉 ↔ (𝑄‘suc 𝑏) = 〈suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))〉)) |
| 16 | | fveq2 6906 |
. . 3
⊢ (𝑎 = 𝐴 → (𝑄‘𝑎) = (𝑄‘𝐴)) |
| 17 | | id 22 |
. . . 4
⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) |
| 18 | | 2fveq3 6911 |
. . . 4
⊢ (𝑎 = 𝐴 → (2nd ‘(𝑄‘𝑎)) = (2nd ‘(𝑄‘𝐴))) |
| 19 | 17, 18 | opeq12d 4881 |
. . 3
⊢ (𝑎 = 𝐴 → 〈𝑎, (2nd ‘(𝑄‘𝑎))〉 = 〈𝐴, (2nd ‘(𝑄‘𝐴))〉) |
| 20 | 16, 19 | eqeq12d 2753 |
. 2
⊢ (𝑎 = 𝐴 → ((𝑄‘𝑎) = 〈𝑎, (2nd ‘(𝑄‘𝑎))〉 ↔ (𝑄‘𝐴) = 〈𝐴, (2nd ‘(𝑄‘𝐴))〉)) |
| 21 | | seqomlem.a |
. . . . 5
⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) |
| 22 | 21 | fveq1i 6907 |
. . . 4
⊢ (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) |
| 23 | | opex 5469 |
. . . . 5
⊢
〈∅, ( I ‘𝐼)〉 ∈ V |
| 24 | 23 | rdg0 8461 |
. . . 4
⊢
(rec((𝑖 ∈
ω, 𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) =
〈∅, ( I ‘𝐼)〉 |
| 25 | 22, 24 | eqtri 2765 |
. . 3
⊢ (𝑄‘∅) = 〈∅,
( I ‘𝐼)〉 |
| 26 | | 0ex 5307 |
. . . . . . 7
⊢ ∅
∈ V |
| 27 | | fvex 6919 |
. . . . . . 7
⊢ ( I
‘𝐼) ∈
V |
| 28 | 26, 27 | op2nd 8023 |
. . . . . 6
⊢
(2nd ‘〈∅, ( I ‘𝐼)〉) = ( I ‘𝐼) |
| 29 | 28 | eqcomi 2746 |
. . . . 5
⊢ ( I
‘𝐼) = (2nd
‘〈∅, ( I ‘𝐼)〉) |
| 30 | 29 | opeq2i 4877 |
. . . 4
⊢
〈∅, ( I ‘𝐼)〉 = 〈∅, (2nd
‘〈∅, ( I ‘𝐼)〉)〉 |
| 31 | | id 22 |
. . . 4
⊢ ((𝑄‘∅) = 〈∅,
( I ‘𝐼)〉 →
(𝑄‘∅) =
〈∅, ( I ‘𝐼)〉) |
| 32 | | fveq2 6906 |
. . . . 5
⊢ ((𝑄‘∅) = 〈∅,
( I ‘𝐼)〉 →
(2nd ‘(𝑄‘∅)) = (2nd
‘〈∅, ( I ‘𝐼)〉)) |
| 33 | 32 | opeq2d 4880 |
. . . 4
⊢ ((𝑄‘∅) = 〈∅,
( I ‘𝐼)〉 →
〈∅, (2nd ‘(𝑄‘∅))〉 = 〈∅,
(2nd ‘〈∅, ( I ‘𝐼)〉)〉) |
| 34 | 30, 31, 33 | 3eqtr4a 2803 |
. . 3
⊢ ((𝑄‘∅) = 〈∅,
( I ‘𝐼)〉 →
(𝑄‘∅) =
〈∅, (2nd ‘(𝑄‘∅))〉) |
| 35 | 25, 34 | ax-mp 5 |
. 2
⊢ (𝑄‘∅) = 〈∅,
(2nd ‘(𝑄‘∅))〉 |
| 36 | | df-ov 7434 |
. . . . . 6
⊢ (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)(2nd ‘(𝑄‘𝑏))) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘〈𝑏, (2nd ‘(𝑄‘𝑏))〉) |
| 37 | | fvex 6919 |
. . . . . . 7
⊢
(2nd ‘(𝑄‘𝑏)) ∈ V |
| 38 | | suceq 6450 |
. . . . . . . . 9
⊢ (𝑖 = 𝑏 → suc 𝑖 = suc 𝑏) |
| 39 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑖 = 𝑏 → (𝑖𝐹𝑣) = (𝑏𝐹𝑣)) |
| 40 | 38, 39 | opeq12d 4881 |
. . . . . . . 8
⊢ (𝑖 = 𝑏 → 〈suc 𝑖, (𝑖𝐹𝑣)〉 = 〈suc 𝑏, (𝑏𝐹𝑣)〉) |
| 41 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑣 = (2nd ‘(𝑄‘𝑏)) → (𝑏𝐹𝑣) = (𝑏𝐹(2nd ‘(𝑄‘𝑏)))) |
| 42 | 41 | opeq2d 4880 |
. . . . . . . 8
⊢ (𝑣 = (2nd ‘(𝑄‘𝑏)) → 〈suc 𝑏, (𝑏𝐹𝑣)〉 = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉) |
| 43 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉) = (𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉) |
| 44 | | opex 5469 |
. . . . . . . 8
⊢ 〈suc
𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 ∈ V |
| 45 | 40, 42, 43, 44 | ovmpo 7593 |
. . . . . . 7
⊢ ((𝑏 ∈ ω ∧
(2nd ‘(𝑄‘𝑏)) ∈ V) → (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)(2nd ‘(𝑄‘𝑏))) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉) |
| 46 | 37, 45 | mpan2 691 |
. . . . . 6
⊢ (𝑏 ∈ ω → (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)(2nd ‘(𝑄‘𝑏))) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉) |
| 47 | 36, 46 | eqtr3id 2791 |
. . . . 5
⊢ (𝑏 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘〈𝑏, (2nd ‘(𝑄‘𝑏))〉) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉) |
| 48 | | fveqeq2 6915 |
. . . . 5
⊢ ((𝑄‘𝑏) = 〈𝑏, (2nd ‘(𝑄‘𝑏))〉 → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 ↔ ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘〈𝑏, (2nd ‘(𝑄‘𝑏))〉) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉)) |
| 49 | 47, 48 | syl5ibrcom 247 |
. . . 4
⊢ (𝑏 ∈ ω → ((𝑄‘𝑏) = 〈𝑏, (2nd ‘(𝑄‘𝑏))〉 → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉)) |
| 50 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
| 51 | 50 | sucex 7826 |
. . . . . . . . 9
⊢ suc 𝑏 ∈ V |
| 52 | | ovex 7464 |
. . . . . . . . 9
⊢ (𝑏𝐹(2nd ‘(𝑄‘𝑏))) ∈ V |
| 53 | 51, 52 | op2nd 8023 |
. . . . . . . 8
⊢
(2nd ‘〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉) = (𝑏𝐹(2nd ‘(𝑄‘𝑏))) |
| 54 | 53 | eqcomi 2746 |
. . . . . . 7
⊢ (𝑏𝐹(2nd ‘(𝑄‘𝑏))) = (2nd ‘〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉) |
| 55 | 54 | a1i 11 |
. . . . . 6
⊢ (𝑏 ∈ ω → (𝑏𝐹(2nd ‘(𝑄‘𝑏))) = (2nd ‘〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉)) |
| 56 | 55 | opeq2d 4880 |
. . . . 5
⊢ (𝑏 ∈ ω → 〈suc
𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 = 〈suc 𝑏, (2nd ‘〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉)〉) |
| 57 | | id 22 |
. . . . . 6
⊢ (((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉) |
| 58 | | fveq2 6906 |
. . . . . . 7
⊢ (((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 → (2nd
‘((𝑖 ∈ ω,
𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏))) = (2nd ‘〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉)) |
| 59 | 58 | opeq2d 4880 |
. . . . . 6
⊢ (((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 → 〈suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)))〉 = 〈suc 𝑏, (2nd ‘〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉)〉) |
| 60 | 57, 59 | eqeq12d 2753 |
. . . . 5
⊢ (((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)))〉 ↔ 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 = 〈suc 𝑏, (2nd ‘〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉)〉)) |
| 61 | 56, 60 | syl5ibrcom 247 |
. . . 4
⊢ (𝑏 ∈ ω → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (𝑏𝐹(2nd ‘(𝑄‘𝑏)))〉 → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)))〉)) |
| 62 | 49, 61 | syld 47 |
. . 3
⊢ (𝑏 ∈ ω → ((𝑄‘𝑏) = 〈𝑏, (2nd ‘(𝑄‘𝑏))〉 → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)))〉)) |
| 63 | | frsuc 8477 |
. . . . 5
⊢ (𝑏 ∈ ω →
((rec((𝑖 ∈ ω,
𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾
ω)‘suc 𝑏) =
((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾
ω)‘𝑏))) |
| 64 | | peano2 7912 |
. . . . . . 7
⊢ (𝑏 ∈ ω → suc 𝑏 ∈
ω) |
| 65 | 64 | fvresd 6926 |
. . . . . 6
⊢ (𝑏 ∈ ω →
((rec((𝑖 ∈ ω,
𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾
ω)‘suc 𝑏) =
(rec((𝑖 ∈ ω,
𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘suc 𝑏)) |
| 66 | 21 | fveq1i 6907 |
. . . . . 6
⊢ (𝑄‘suc 𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘suc 𝑏) |
| 67 | 65, 66 | eqtr4di 2795 |
. . . . 5
⊢ (𝑏 ∈ ω →
((rec((𝑖 ∈ ω,
𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾
ω)‘suc 𝑏) =
(𝑄‘suc 𝑏)) |
| 68 | | fvres 6925 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
((rec((𝑖 ∈ ω,
𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾
ω)‘𝑏) =
(rec((𝑖 ∈ ω,
𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘𝑏)) |
| 69 | 21 | fveq1i 6907 |
. . . . . . 7
⊢ (𝑄‘𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘𝑏) |
| 70 | 68, 69 | eqtr4di 2795 |
. . . . . 6
⊢ (𝑏 ∈ ω →
((rec((𝑖 ∈ ω,
𝑣 ∈ V ↦
〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾
ω)‘𝑏) = (𝑄‘𝑏)) |
| 71 | 70 | fveq2d 6910 |
. . . . 5
⊢ (𝑏 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾
ω)‘𝑏)) =
((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏))) |
| 72 | 63, 67, 71 | 3eqtr3d 2785 |
. . . 4
⊢ (𝑏 ∈ ω → (𝑄‘suc 𝑏) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏))) |
| 73 | 72 | fveq2d 6910 |
. . . . 5
⊢ (𝑏 ∈ ω →
(2nd ‘(𝑄‘suc 𝑏)) = (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)))) |
| 74 | 73 | opeq2d 4880 |
. . . 4
⊢ (𝑏 ∈ ω → 〈suc
𝑏, (2nd
‘(𝑄‘suc 𝑏))〉 = 〈suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc
𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)))〉) |
| 75 | 72, 74 | eqeq12d 2753 |
. . 3
⊢ (𝑏 ∈ ω → ((𝑄‘suc 𝑏) = 〈suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))〉 ↔ ((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)) = 〈suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉)‘(𝑄‘𝑏)))〉)) |
| 76 | 62, 75 | sylibrd 259 |
. 2
⊢ (𝑏 ∈ ω → ((𝑄‘𝑏) = 〈𝑏, (2nd ‘(𝑄‘𝑏))〉 → (𝑄‘suc 𝑏) = 〈suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))〉)) |
| 77 | 5, 10, 15, 20, 35, 76 | finds 7918 |
1
⊢ (𝐴 ∈ ω → (𝑄‘𝐴) = 〈𝐴, (2nd ‘(𝑄‘𝐴))〉) |