MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem1 Structured version   Visualization version   GIF version

Theorem seqomlem1 7698
Description: Lemma for seq𝜔. The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem1 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
Distinct variable groups:   𝑄,𝑖,𝑣   𝐴,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6332 . . 3 (𝑎 = ∅ → (𝑄𝑎) = (𝑄‘∅))
2 id 22 . . . 4 (𝑎 = ∅ → 𝑎 = ∅)
31fveq2d 6336 . . . 4 (𝑎 = ∅ → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄‘∅)))
42, 3opeq12d 4547 . . 3 (𝑎 = ∅ → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨∅, (2nd ‘(𝑄‘∅))⟩)
51, 4eqeq12d 2786 . 2 (𝑎 = ∅ → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩))
6 fveq2 6332 . . 3 (𝑎 = 𝑏 → (𝑄𝑎) = (𝑄𝑏))
7 id 22 . . . 4 (𝑎 = 𝑏𝑎 = 𝑏)
86fveq2d 6336 . . . 4 (𝑎 = 𝑏 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄𝑏)))
97, 8opeq12d 4547 . . 3 (𝑎 = 𝑏 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
106, 9eqeq12d 2786 . 2 (𝑎 = 𝑏 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩))
11 fveq2 6332 . . 3 (𝑎 = suc 𝑏 → (𝑄𝑎) = (𝑄‘suc 𝑏))
12 id 22 . . . 4 (𝑎 = suc 𝑏𝑎 = suc 𝑏)
1311fveq2d 6336 . . . 4 (𝑎 = suc 𝑏 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄‘suc 𝑏)))
1412, 13opeq12d 4547 . . 3 (𝑎 = suc 𝑏 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩)
1511, 14eqeq12d 2786 . 2 (𝑎 = suc 𝑏 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩))
16 fveq2 6332 . . 3 (𝑎 = 𝐴 → (𝑄𝑎) = (𝑄𝐴))
17 id 22 . . . 4 (𝑎 = 𝐴𝑎 = 𝐴)
1816fveq2d 6336 . . . 4 (𝑎 = 𝐴 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄𝐴)))
1917, 18opeq12d 4547 . . 3 (𝑎 = 𝐴 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
2016, 19eqeq12d 2786 . 2 (𝑎 = 𝐴 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩))
21 seqomlem.a . . . . 5 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
2221fveq1i 6333 . . . 4 (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅)
23 opex 5060 . . . . 5 ⟨∅, ( I ‘𝐼)⟩ ∈ V
2423rdg0 7670 . . . 4 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅) = ⟨∅, ( I ‘𝐼)⟩
2522, 24eqtri 2793 . . 3 (𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩
26 0ex 4924 . . . . . . 7 ∅ ∈ V
27 fvex 6342 . . . . . . 7 ( I ‘𝐼) ∈ V
2826, 27op2nd 7324 . . . . . 6 (2nd ‘⟨∅, ( I ‘𝐼)⟩) = ( I ‘𝐼)
2928eqcomi 2780 . . . . 5 ( I ‘𝐼) = (2nd ‘⟨∅, ( I ‘𝐼)⟩)
3029opeq2i 4543 . . . 4 ⟨∅, ( I ‘𝐼)⟩ = ⟨∅, (2nd ‘⟨∅, ( I ‘𝐼)⟩)⟩
31 id 22 . . . 4 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩)
32 fveq2 6332 . . . . 5 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (2nd ‘(𝑄‘∅)) = (2nd ‘⟨∅, ( I ‘𝐼)⟩))
3332opeq2d 4546 . . . 4 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → ⟨∅, (2nd ‘(𝑄‘∅))⟩ = ⟨∅, (2nd ‘⟨∅, ( I ‘𝐼)⟩)⟩)
3430, 31, 333eqtr4a 2831 . . 3 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩)
3525, 34ax-mp 5 . 2 (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩
36 df-ov 6796 . . . . . 6 (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
37 fvex 6342 . . . . . . 7 (2nd ‘(𝑄𝑏)) ∈ V
38 suceq 5933 . . . . . . . . 9 (𝑖 = 𝑏 → suc 𝑖 = suc 𝑏)
39 oveq1 6800 . . . . . . . . 9 (𝑖 = 𝑏 → (𝑖𝐹𝑣) = (𝑏𝐹𝑣))
4038, 39opeq12d 4547 . . . . . . . 8 (𝑖 = 𝑏 → ⟨suc 𝑖, (𝑖𝐹𝑣)⟩ = ⟨suc 𝑏, (𝑏𝐹𝑣)⟩)
41 oveq2 6801 . . . . . . . . 9 (𝑣 = (2nd ‘(𝑄𝑏)) → (𝑏𝐹𝑣) = (𝑏𝐹(2nd ‘(𝑄𝑏))))
4241opeq2d 4546 . . . . . . . 8 (𝑣 = (2nd ‘(𝑄𝑏)) → ⟨suc 𝑏, (𝑏𝐹𝑣)⟩ = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
43 eqid 2771 . . . . . . . 8 (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩) = (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)
44 opex 5060 . . . . . . . 8 ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ ∈ V
4540, 42, 43, 44ovmpt2 6943 . . . . . . 7 ((𝑏 ∈ ω ∧ (2nd ‘(𝑄𝑏)) ∈ V) → (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
4637, 45mpan2 671 . . . . . 6 (𝑏 ∈ ω → (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
4736, 46syl5eqr 2819 . . . . 5 (𝑏 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
48 fveq2 6332 . . . . . 6 ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩))
4948eqeq1d 2773 . . . . 5 ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ ↔ ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
5047, 49syl5ibrcom 237 . . . 4 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
51 vex 3354 . . . . . . . . . 10 𝑏 ∈ V
5251sucex 7158 . . . . . . . . 9 suc 𝑏 ∈ V
53 ovex 6823 . . . . . . . . 9 (𝑏𝐹(2nd ‘(𝑄𝑏))) ∈ V
5452, 53op2nd 7324 . . . . . . . 8 (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩) = (𝑏𝐹(2nd ‘(𝑄𝑏)))
5554eqcomi 2780 . . . . . . 7 (𝑏𝐹(2nd ‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
5655a1i 11 . . . . . 6 (𝑏 ∈ ω → (𝑏𝐹(2nd ‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
5756opeq2d 4546 . . . . 5 (𝑏 ∈ ω → ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩)
58 id 22 . . . . . 6 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
59 fveq2 6332 . . . . . . 7 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
6059opeq2d 4546 . . . . . 6 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩)
6158, 60eqeq12d 2786 . . . . 5 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩ ↔ ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩))
6257, 61syl5ibrcom 237 . . . 4 (𝑏 ∈ ω → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
6350, 62syld 47 . . 3 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
64 frsuc 7685 . . . . 5 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏)))
65 peano2 7233 . . . . . . 7 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
66 fvres 6348 . . . . . . 7 (suc 𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝑏))
6765, 66syl 17 . . . . . 6 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝑏))
6821fveq1i 6333 . . . . . 6 (𝑄‘suc 𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝑏)
6967, 68syl6eqr 2823 . . . . 5 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = (𝑄‘suc 𝑏))
70 fvres 6348 . . . . . . 7 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝑏))
7121fveq1i 6333 . . . . . . 7 (𝑄𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝑏)
7270, 71syl6eqr 2823 . . . . . 6 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏) = (𝑄𝑏))
7372fveq2d 6336 . . . . 5 (𝑏 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))
7464, 69, 733eqtr3d 2813 . . . 4 (𝑏 ∈ ω → (𝑄‘suc 𝑏) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))
7574fveq2d 6336 . . . . 5 (𝑏 ∈ ω → (2nd ‘(𝑄‘suc 𝑏)) = (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏))))
7675opeq2d 4546 . . . 4 (𝑏 ∈ ω → ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩ = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩)
7774, 76eqeq12d 2786 . . 3 (𝑏 ∈ ω → ((𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩ ↔ ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
7863, 77sylibrd 249 . 2 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → (𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩))
795, 10, 15, 20, 35, 78finds 7239 1 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  Vcvv 3351  c0 4063  cop 4322   I cid 5156  cres 5251  suc csuc 5868  cfv 6031  (class class class)co 6793  cmpt2 6795  ωcom 7212  2nd c2nd 7314  reccrdg 7658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659
This theorem is referenced by:  seqomlem2  7699  seqomlem4  7701
  Copyright terms: Public domain W3C validator