MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem1 Structured version   Visualization version   GIF version

Theorem seqomlem1 8506
Description: Lemma for seqω. The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem1 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
Distinct variable groups:   𝑄,𝑖,𝑣   𝐴,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . 3 (𝑎 = ∅ → (𝑄𝑎) = (𝑄‘∅))
2 id 22 . . . 4 (𝑎 = ∅ → 𝑎 = ∅)
3 2fveq3 6925 . . . 4 (𝑎 = ∅ → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄‘∅)))
42, 3opeq12d 4905 . . 3 (𝑎 = ∅ → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨∅, (2nd ‘(𝑄‘∅))⟩)
51, 4eqeq12d 2756 . 2 (𝑎 = ∅ → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩))
6 fveq2 6920 . . 3 (𝑎 = 𝑏 → (𝑄𝑎) = (𝑄𝑏))
7 id 22 . . . 4 (𝑎 = 𝑏𝑎 = 𝑏)
8 2fveq3 6925 . . . 4 (𝑎 = 𝑏 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄𝑏)))
97, 8opeq12d 4905 . . 3 (𝑎 = 𝑏 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
106, 9eqeq12d 2756 . 2 (𝑎 = 𝑏 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩))
11 fveq2 6920 . . 3 (𝑎 = suc 𝑏 → (𝑄𝑎) = (𝑄‘suc 𝑏))
12 id 22 . . . 4 (𝑎 = suc 𝑏𝑎 = suc 𝑏)
13 2fveq3 6925 . . . 4 (𝑎 = suc 𝑏 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄‘suc 𝑏)))
1412, 13opeq12d 4905 . . 3 (𝑎 = suc 𝑏 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩)
1511, 14eqeq12d 2756 . 2 (𝑎 = suc 𝑏 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩))
16 fveq2 6920 . . 3 (𝑎 = 𝐴 → (𝑄𝑎) = (𝑄𝐴))
17 id 22 . . . 4 (𝑎 = 𝐴𝑎 = 𝐴)
18 2fveq3 6925 . . . 4 (𝑎 = 𝐴 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄𝐴)))
1917, 18opeq12d 4905 . . 3 (𝑎 = 𝐴 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
2016, 19eqeq12d 2756 . 2 (𝑎 = 𝐴 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩))
21 seqomlem.a . . . . 5 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
2221fveq1i 6921 . . . 4 (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅)
23 opex 5484 . . . . 5 ⟨∅, ( I ‘𝐼)⟩ ∈ V
2423rdg0 8477 . . . 4 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅) = ⟨∅, ( I ‘𝐼)⟩
2522, 24eqtri 2768 . . 3 (𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩
26 0ex 5325 . . . . . . 7 ∅ ∈ V
27 fvex 6933 . . . . . . 7 ( I ‘𝐼) ∈ V
2826, 27op2nd 8039 . . . . . 6 (2nd ‘⟨∅, ( I ‘𝐼)⟩) = ( I ‘𝐼)
2928eqcomi 2749 . . . . 5 ( I ‘𝐼) = (2nd ‘⟨∅, ( I ‘𝐼)⟩)
3029opeq2i 4901 . . . 4 ⟨∅, ( I ‘𝐼)⟩ = ⟨∅, (2nd ‘⟨∅, ( I ‘𝐼)⟩)⟩
31 id 22 . . . 4 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩)
32 fveq2 6920 . . . . 5 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (2nd ‘(𝑄‘∅)) = (2nd ‘⟨∅, ( I ‘𝐼)⟩))
3332opeq2d 4904 . . . 4 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → ⟨∅, (2nd ‘(𝑄‘∅))⟩ = ⟨∅, (2nd ‘⟨∅, ( I ‘𝐼)⟩)⟩)
3430, 31, 333eqtr4a 2806 . . 3 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩)
3525, 34ax-mp 5 . 2 (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩
36 df-ov 7451 . . . . . 6 (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
37 fvex 6933 . . . . . . 7 (2nd ‘(𝑄𝑏)) ∈ V
38 suceq 6461 . . . . . . . . 9 (𝑖 = 𝑏 → suc 𝑖 = suc 𝑏)
39 oveq1 7455 . . . . . . . . 9 (𝑖 = 𝑏 → (𝑖𝐹𝑣) = (𝑏𝐹𝑣))
4038, 39opeq12d 4905 . . . . . . . 8 (𝑖 = 𝑏 → ⟨suc 𝑖, (𝑖𝐹𝑣)⟩ = ⟨suc 𝑏, (𝑏𝐹𝑣)⟩)
41 oveq2 7456 . . . . . . . . 9 (𝑣 = (2nd ‘(𝑄𝑏)) → (𝑏𝐹𝑣) = (𝑏𝐹(2nd ‘(𝑄𝑏))))
4241opeq2d 4904 . . . . . . . 8 (𝑣 = (2nd ‘(𝑄𝑏)) → ⟨suc 𝑏, (𝑏𝐹𝑣)⟩ = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
43 eqid 2740 . . . . . . . 8 (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩) = (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)
44 opex 5484 . . . . . . . 8 ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ ∈ V
4540, 42, 43, 44ovmpo 7610 . . . . . . 7 ((𝑏 ∈ ω ∧ (2nd ‘(𝑄𝑏)) ∈ V) → (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
4637, 45mpan2 690 . . . . . 6 (𝑏 ∈ ω → (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
4736, 46eqtr3id 2794 . . . . 5 (𝑏 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
48 fveqeq2 6929 . . . . 5 ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ ↔ ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
4947, 48syl5ibrcom 247 . . . 4 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
50 vex 3492 . . . . . . . . . 10 𝑏 ∈ V
5150sucex 7842 . . . . . . . . 9 suc 𝑏 ∈ V
52 ovex 7481 . . . . . . . . 9 (𝑏𝐹(2nd ‘(𝑄𝑏))) ∈ V
5351, 52op2nd 8039 . . . . . . . 8 (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩) = (𝑏𝐹(2nd ‘(𝑄𝑏)))
5453eqcomi 2749 . . . . . . 7 (𝑏𝐹(2nd ‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
5554a1i 11 . . . . . 6 (𝑏 ∈ ω → (𝑏𝐹(2nd ‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
5655opeq2d 4904 . . . . 5 (𝑏 ∈ ω → ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩)
57 id 22 . . . . . 6 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
58 fveq2 6920 . . . . . . 7 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
5958opeq2d 4904 . . . . . 6 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩)
6057, 59eqeq12d 2756 . . . . 5 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩ ↔ ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩))
6156, 60syl5ibrcom 247 . . . 4 (𝑏 ∈ ω → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
6249, 61syld 47 . . 3 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
63 frsuc 8493 . . . . 5 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏)))
64 peano2 7929 . . . . . . 7 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
6564fvresd 6940 . . . . . 6 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝑏))
6621fveq1i 6921 . . . . . 6 (𝑄‘suc 𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝑏)
6765, 66eqtr4di 2798 . . . . 5 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = (𝑄‘suc 𝑏))
68 fvres 6939 . . . . . . 7 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝑏))
6921fveq1i 6921 . . . . . . 7 (𝑄𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝑏)
7068, 69eqtr4di 2798 . . . . . 6 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏) = (𝑄𝑏))
7170fveq2d 6924 . . . . 5 (𝑏 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))
7263, 67, 713eqtr3d 2788 . . . 4 (𝑏 ∈ ω → (𝑄‘suc 𝑏) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))
7372fveq2d 6924 . . . . 5 (𝑏 ∈ ω → (2nd ‘(𝑄‘suc 𝑏)) = (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏))))
7473opeq2d 4904 . . . 4 (𝑏 ∈ ω → ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩ = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩)
7572, 74eqeq12d 2756 . . 3 (𝑏 ∈ ω → ((𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩ ↔ ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
7662, 75sylibrd 259 . 2 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → (𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩))
775, 10, 15, 20, 35, 76finds 7936 1 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cop 4654   I cid 5592  cres 5702  suc csuc 6397  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  2nd c2nd 8029  reccrdg 8465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466
This theorem is referenced by:  seqomlem2  8507  seqomlem4  8509
  Copyright terms: Public domain W3C validator