MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem1 Structured version   Visualization version   GIF version

Theorem seqomlem1 8251
Description: Lemma for seqω. The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem1 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
Distinct variable groups:   𝑄,𝑖,𝑣   𝐴,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑎 = ∅ → (𝑄𝑎) = (𝑄‘∅))
2 id 22 . . . 4 (𝑎 = ∅ → 𝑎 = ∅)
3 2fveq3 6761 . . . 4 (𝑎 = ∅ → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄‘∅)))
42, 3opeq12d 4809 . . 3 (𝑎 = ∅ → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨∅, (2nd ‘(𝑄‘∅))⟩)
51, 4eqeq12d 2754 . 2 (𝑎 = ∅ → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩))
6 fveq2 6756 . . 3 (𝑎 = 𝑏 → (𝑄𝑎) = (𝑄𝑏))
7 id 22 . . . 4 (𝑎 = 𝑏𝑎 = 𝑏)
8 2fveq3 6761 . . . 4 (𝑎 = 𝑏 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄𝑏)))
97, 8opeq12d 4809 . . 3 (𝑎 = 𝑏 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
106, 9eqeq12d 2754 . 2 (𝑎 = 𝑏 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩))
11 fveq2 6756 . . 3 (𝑎 = suc 𝑏 → (𝑄𝑎) = (𝑄‘suc 𝑏))
12 id 22 . . . 4 (𝑎 = suc 𝑏𝑎 = suc 𝑏)
13 2fveq3 6761 . . . 4 (𝑎 = suc 𝑏 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄‘suc 𝑏)))
1412, 13opeq12d 4809 . . 3 (𝑎 = suc 𝑏 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩)
1511, 14eqeq12d 2754 . 2 (𝑎 = suc 𝑏 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩))
16 fveq2 6756 . . 3 (𝑎 = 𝐴 → (𝑄𝑎) = (𝑄𝐴))
17 id 22 . . . 4 (𝑎 = 𝐴𝑎 = 𝐴)
18 2fveq3 6761 . . . 4 (𝑎 = 𝐴 → (2nd ‘(𝑄𝑎)) = (2nd ‘(𝑄𝐴)))
1917, 18opeq12d 4809 . . 3 (𝑎 = 𝐴 → ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
2016, 19eqeq12d 2754 . 2 (𝑎 = 𝐴 → ((𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩))
21 seqomlem.a . . . . 5 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
2221fveq1i 6757 . . . 4 (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅)
23 opex 5373 . . . . 5 ⟨∅, ( I ‘𝐼)⟩ ∈ V
2423rdg0 8223 . . . 4 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅) = ⟨∅, ( I ‘𝐼)⟩
2522, 24eqtri 2766 . . 3 (𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩
26 0ex 5226 . . . . . . 7 ∅ ∈ V
27 fvex 6769 . . . . . . 7 ( I ‘𝐼) ∈ V
2826, 27op2nd 7813 . . . . . 6 (2nd ‘⟨∅, ( I ‘𝐼)⟩) = ( I ‘𝐼)
2928eqcomi 2747 . . . . 5 ( I ‘𝐼) = (2nd ‘⟨∅, ( I ‘𝐼)⟩)
3029opeq2i 4805 . . . 4 ⟨∅, ( I ‘𝐼)⟩ = ⟨∅, (2nd ‘⟨∅, ( I ‘𝐼)⟩)⟩
31 id 22 . . . 4 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩)
32 fveq2 6756 . . . . 5 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (2nd ‘(𝑄‘∅)) = (2nd ‘⟨∅, ( I ‘𝐼)⟩))
3332opeq2d 4808 . . . 4 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → ⟨∅, (2nd ‘(𝑄‘∅))⟩ = ⟨∅, (2nd ‘⟨∅, ( I ‘𝐼)⟩)⟩)
3430, 31, 333eqtr4a 2805 . . 3 ((𝑄‘∅) = ⟨∅, ( I ‘𝐼)⟩ → (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩)
3525, 34ax-mp 5 . 2 (𝑄‘∅) = ⟨∅, (2nd ‘(𝑄‘∅))⟩
36 df-ov 7258 . . . . . 6 (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
37 fvex 6769 . . . . . . 7 (2nd ‘(𝑄𝑏)) ∈ V
38 suceq 6316 . . . . . . . . 9 (𝑖 = 𝑏 → suc 𝑖 = suc 𝑏)
39 oveq1 7262 . . . . . . . . 9 (𝑖 = 𝑏 → (𝑖𝐹𝑣) = (𝑏𝐹𝑣))
4038, 39opeq12d 4809 . . . . . . . 8 (𝑖 = 𝑏 → ⟨suc 𝑖, (𝑖𝐹𝑣)⟩ = ⟨suc 𝑏, (𝑏𝐹𝑣)⟩)
41 oveq2 7263 . . . . . . . . 9 (𝑣 = (2nd ‘(𝑄𝑏)) → (𝑏𝐹𝑣) = (𝑏𝐹(2nd ‘(𝑄𝑏))))
4241opeq2d 4808 . . . . . . . 8 (𝑣 = (2nd ‘(𝑄𝑏)) → ⟨suc 𝑏, (𝑏𝐹𝑣)⟩ = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
43 eqid 2738 . . . . . . . 8 (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩) = (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)
44 opex 5373 . . . . . . . 8 ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ ∈ V
4540, 42, 43, 44ovmpo 7411 . . . . . . 7 ((𝑏 ∈ ω ∧ (2nd ‘(𝑄𝑏)) ∈ V) → (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
4637, 45mpan2 687 . . . . . 6 (𝑏 ∈ ω → (𝑏(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝑏))) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
4736, 46eqtr3id 2793 . . . . 5 (𝑏 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
48 fveqeq2 6765 . . . . 5 ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ ↔ ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝑏, (2nd ‘(𝑄𝑏))⟩) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
4947, 48syl5ibrcom 246 . . . 4 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
50 vex 3426 . . . . . . . . . 10 𝑏 ∈ V
5150sucex 7633 . . . . . . . . 9 suc 𝑏 ∈ V
52 ovex 7288 . . . . . . . . 9 (𝑏𝐹(2nd ‘(𝑄𝑏))) ∈ V
5351, 52op2nd 7813 . . . . . . . 8 (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩) = (𝑏𝐹(2nd ‘(𝑄𝑏)))
5453eqcomi 2747 . . . . . . 7 (𝑏𝐹(2nd ‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
5554a1i 11 . . . . . 6 (𝑏 ∈ ω → (𝑏𝐹(2nd ‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
5655opeq2d 4808 . . . . 5 (𝑏 ∈ ω → ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩)
57 id 22 . . . . . 6 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)
58 fveq2 6756 . . . . . . 7 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏))) = (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩))
5958opeq2d 4808 . . . . . 6 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩)
6057, 59eqeq12d 2754 . . . . 5 (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩ ↔ ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ = ⟨suc 𝑏, (2nd ‘⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩)⟩))
6156, 60syl5ibrcom 246 . . . 4 (𝑏 ∈ ω → (((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (𝑏𝐹(2nd ‘(𝑄𝑏)))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
6249, 61syld 47 . . 3 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
63 frsuc 8238 . . . . 5 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏)))
64 peano2 7711 . . . . . . 7 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
6564fvresd 6776 . . . . . 6 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝑏))
6621fveq1i 6757 . . . . . 6 (𝑄‘suc 𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝑏)
6765, 66eqtr4di 2797 . . . . 5 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝑏) = (𝑄‘suc 𝑏))
68 fvres 6775 . . . . . . 7 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝑏))
6921fveq1i 6757 . . . . . . 7 (𝑄𝑏) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝑏)
7068, 69eqtr4di 2797 . . . . . 6 (𝑏 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏) = (𝑄𝑏))
7170fveq2d 6760 . . . . 5 (𝑏 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝑏)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))
7263, 67, 713eqtr3d 2786 . . . 4 (𝑏 ∈ ω → (𝑄‘suc 𝑏) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))
7372fveq2d 6760 . . . . 5 (𝑏 ∈ ω → (2nd ‘(𝑄‘suc 𝑏)) = (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏))))
7473opeq2d 4808 . . . 4 (𝑏 ∈ ω → ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩ = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩)
7572, 74eqeq12d 2754 . . 3 (𝑏 ∈ ω → ((𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩ ↔ ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)) = ⟨suc 𝑏, (2nd ‘((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝑏)))⟩))
7662, 75sylibrd 258 . 2 (𝑏 ∈ ω → ((𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ → (𝑄‘suc 𝑏) = ⟨suc 𝑏, (2nd ‘(𝑄‘suc 𝑏))⟩))
775, 10, 15, 20, 35, 76finds 7719 1 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cop 4564   I cid 5479  cres 5582  suc csuc 6253  cfv 6418  (class class class)co 7255  cmpo 7257  ωcom 7687  2nd c2nd 7803  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by:  seqomlem2  8252  seqomlem4  8254
  Copyright terms: Public domain W3C validator