MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsplusg Structured version   Visualization version   GIF version

Theorem setsplusg 19368
Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
setsplusg.o 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
setsplusg.e 𝐸 = Slot (𝐸‘ndx)
setsplusg.i (𝐸‘ndx) ≠ (+g‘ndx)
Assertion
Ref Expression
setsplusg (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem setsplusg
StepHypRef Expression
1 setsplusg.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 setsplusg.i . . 3 (𝐸‘ndx) ≠ (+g‘ndx)
31, 2setsnid 17245 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
4 setsplusg.o . . 3 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
54fveq2i 6909 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
63, 5eqtr4i 2768 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wne 2940  cop 4632  cfv 6561  (class class class)co 7431   sSet csts 17200  Slot cslot 17218  ndxcnx 17230  +gcplusg 17297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sets 17201  df-slot 17219
This theorem is referenced by:  oppgbas  19370  oppgtset  19371  mgpbas  20142  mgpsca  20143  mgptset  20144  mgpds  20146  oppgle  32951
  Copyright terms: Public domain W3C validator