![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsplusg | Structured version Visualization version GIF version |
Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
Ref | Expression |
---|---|
setsplusg.o | β’ π = (π sSet β¨(+gβndx), πβ©) |
setsplusg.e | β’ πΈ = Slot (πΈβndx) |
setsplusg.i | β’ (πΈβndx) β (+gβndx) |
Ref | Expression |
---|---|
setsplusg | β’ (πΈβπ ) = (πΈβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsplusg.e | . . 3 β’ πΈ = Slot (πΈβndx) | |
2 | setsplusg.i | . . 3 β’ (πΈβndx) β (+gβndx) | |
3 | 1, 2 | setsnid 17146 | . 2 β’ (πΈβπ ) = (πΈβ(π sSet β¨(+gβndx), πβ©)) |
4 | setsplusg.o | . . 3 β’ π = (π sSet β¨(+gβndx), πβ©) | |
5 | 4 | fveq2i 6893 | . 2 β’ (πΈβπ) = (πΈβ(π sSet β¨(+gβndx), πβ©)) |
6 | 3, 5 | eqtr4i 2761 | 1 β’ (πΈβπ ) = (πΈβπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 β wne 2938 β¨cop 4633 βcfv 6542 (class class class)co 7411 sSet csts 17100 Slot cslot 17118 ndxcnx 17130 +gcplusg 17201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-sets 17101 df-slot 17119 |
This theorem is referenced by: oppgbas 19257 oppgtset 19259 mgpbas 20034 mgpsca 20036 mgptset 20038 mgpds 20041 oppgle 32397 |
Copyright terms: Public domain | W3C validator |