Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setsplusg | Structured version Visualization version GIF version |
Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
Ref | Expression |
---|---|
setsplusg.o | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) |
setsplusg.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
setsplusg.i | ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
Ref | Expression |
---|---|
setsplusg | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsplusg.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | setsplusg.i | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) | |
3 | 1, 2 | setsnid 16813 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
4 | setsplusg.o | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) | |
5 | 4 | fveq2i 6756 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
6 | 3, 5 | eqtr4i 2770 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ≠ wne 2943 〈cop 4564 ‘cfv 6415 (class class class)co 7252 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 +gcplusg 16863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-res 5591 df-iota 6373 df-fun 6417 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-sets 16768 df-slot 16786 |
This theorem is referenced by: oppgbas 18846 oppgtset 18848 mgpbas 19616 mgpsca 19618 mgptset 19620 mgpds 19623 oppgle 31115 |
Copyright terms: Public domain | W3C validator |