MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsplusg Structured version   Visualization version   GIF version

Theorem setsplusg 19381
Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
setsplusg.o 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
setsplusg.e 𝐸 = Slot (𝐸‘ndx)
setsplusg.i (𝐸‘ndx) ≠ (+g‘ndx)
Assertion
Ref Expression
setsplusg (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem setsplusg
StepHypRef Expression
1 setsplusg.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 setsplusg.i . . 3 (𝐸‘ndx) ≠ (+g‘ndx)
31, 2setsnid 17243 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
4 setsplusg.o . . 3 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
54fveq2i 6910 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
63, 5eqtr4i 2766 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wne 2938  cop 4637  cfv 6563  (class class class)co 7431   sSet csts 17197  Slot cslot 17215  ndxcnx 17227  +gcplusg 17298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sets 17198  df-slot 17216
This theorem is referenced by:  oppgbas  19383  oppgtset  19385  mgpbas  20158  mgpsca  20160  mgptset  20162  mgpds  20165  oppgle  32936
  Copyright terms: Public domain W3C validator