| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsplusg | Structured version Visualization version GIF version | ||
| Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| setsplusg.o | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) |
| setsplusg.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| setsplusg.i | ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
| Ref | Expression |
|---|---|
| setsplusg | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsplusg.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | setsplusg.i | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) | |
| 3 | 1, 2 | setsnid 17245 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
| 4 | setsplusg.o | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) | |
| 5 | 4 | fveq2i 6909 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
| 6 | 3, 5 | eqtr4i 2768 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2940 〈cop 4632 ‘cfv 6561 (class class class)co 7431 sSet csts 17200 Slot cslot 17218 ndxcnx 17230 +gcplusg 17297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-sets 17201 df-slot 17219 |
| This theorem is referenced by: oppgbas 19370 oppgtset 19371 mgpbas 20142 mgpsca 20143 mgptset 20144 mgpds 20146 oppgle 32951 |
| Copyright terms: Public domain | W3C validator |