MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsplusg Structured version   Visualization version   GIF version

Theorem setsplusg 18844
Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
setsplusg.o 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
setsplusg.e 𝐸 = Slot (𝐸‘ndx)
setsplusg.i (𝐸‘ndx) ≠ (+g‘ndx)
Assertion
Ref Expression
setsplusg (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem setsplusg
StepHypRef Expression
1 setsplusg.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 setsplusg.i . . 3 (𝐸‘ndx) ≠ (+g‘ndx)
31, 2setsnid 16813 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
4 setsplusg.o . . 3 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
54fveq2i 6756 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
63, 5eqtr4i 2770 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wne 2943  cop 4564  cfv 6415  (class class class)co 7252   sSet csts 16767  Slot cslot 16785  ndxcnx 16797  +gcplusg 16863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3713  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-res 5591  df-iota 6373  df-fun 6417  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-sets 16768  df-slot 16786
This theorem is referenced by:  oppgbas  18846  oppgtset  18848  mgpbas  19616  mgpsca  19618  mgptset  19620  mgpds  19623  oppgle  31115
  Copyright terms: Public domain W3C validator