| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsplusg | Structured version Visualization version GIF version | ||
| Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| setsplusg.o | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) |
| setsplusg.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| setsplusg.i | ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
| Ref | Expression |
|---|---|
| setsplusg | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsplusg.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | setsplusg.i | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) | |
| 3 | 1, 2 | setsnid 17137 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
| 4 | setsplusg.o | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) | |
| 5 | 4 | fveq2i 6829 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
| 6 | 3, 5 | eqtr4i 2755 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 〈cop 4585 ‘cfv 6486 (class class class)co 7353 sSet csts 17092 Slot cslot 17110 ndxcnx 17122 +gcplusg 17179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-sets 17093 df-slot 17111 |
| This theorem is referenced by: oppgbas 19248 oppgtset 19249 oppgle 19264 mgpbas 20048 mgpsca 20049 mgptset 20050 mgpds 20052 |
| Copyright terms: Public domain | W3C validator |