![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsplusg | Structured version Visualization version GIF version |
Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
Ref | Expression |
---|---|
setsplusg.o | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) |
setsplusg.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
setsplusg.i | ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
Ref | Expression |
---|---|
setsplusg | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsplusg.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | setsplusg.i | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) | |
3 | 1, 2 | setsnid 17243 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
4 | setsplusg.o | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) | |
5 | 4 | fveq2i 6910 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
6 | 3, 5 | eqtr4i 2766 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2938 〈cop 4637 ‘cfv 6563 (class class class)co 7431 sSet csts 17197 Slot cslot 17215 ndxcnx 17227 +gcplusg 17298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-sets 17198 df-slot 17216 |
This theorem is referenced by: oppgbas 19383 oppgtset 19385 mgpbas 20158 mgpsca 20160 mgptset 20162 mgpds 20165 oppgle 32936 |
Copyright terms: Public domain | W3C validator |