MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsplusg Structured version   Visualization version   GIF version

Theorem setsplusg 18954
Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
setsplusg.o 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
setsplusg.e 𝐸 = Slot (𝐸‘ndx)
setsplusg.i (𝐸‘ndx) ≠ (+g‘ndx)
Assertion
Ref Expression
setsplusg (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem setsplusg
StepHypRef Expression
1 setsplusg.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 setsplusg.i . . 3 (𝐸‘ndx) ≠ (+g‘ndx)
31, 2setsnid 16910 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
4 setsplusg.o . . 3 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
54fveq2i 6777 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
63, 5eqtr4i 2769 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2943  cop 4567  cfv 6433  (class class class)co 7275   sSet csts 16864  Slot cslot 16882  ndxcnx 16894  +gcplusg 16962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-sets 16865  df-slot 16883
This theorem is referenced by:  oppgbas  18956  oppgtset  18958  mgpbas  19726  mgpsca  19728  mgptset  19730  mgpds  19733  oppgle  31238
  Copyright terms: Public domain W3C validator