| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsplusg | Structured version Visualization version GIF version | ||
| Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| setsplusg.o | ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) |
| setsplusg.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| setsplusg.i | ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
| Ref | Expression |
|---|---|
| setsplusg | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsplusg.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | setsplusg.i | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) | |
| 3 | 1, 2 | setsnid 17119 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
| 4 | setsplusg.o | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) | |
| 5 | 4 | fveq2i 6825 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), 𝑆〉)) |
| 6 | 3, 5 | eqtr4i 2757 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2928 〈cop 4582 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 Slot cslot 17092 ndxcnx 17104 +gcplusg 17161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sets 17075 df-slot 17093 |
| This theorem is referenced by: oppgbas 19264 oppgtset 19265 oppgle 19280 mgpbas 20064 mgpsca 20065 mgptset 20066 mgpds 20068 |
| Copyright terms: Public domain | W3C validator |