MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsplusg Structured version   Visualization version   GIF version

Theorem setsplusg 19264
Description: The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
setsplusg.o 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
setsplusg.e 𝐸 = Slot (𝐸‘ndx)
setsplusg.i (𝐸‘ndx) ≠ (+g‘ndx)
Assertion
Ref Expression
setsplusg (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem setsplusg
StepHypRef Expression
1 setsplusg.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 setsplusg.i . . 3 (𝐸‘ndx) ≠ (+g‘ndx)
31, 2setsnid 17121 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
4 setsplusg.o . . 3 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩)
54fveq2i 6831 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(+g‘ndx), 𝑆⟩))
63, 5eqtr4i 2759 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wne 2929  cop 4581  cfv 6486  (class class class)co 7352   sSet csts 17076  Slot cslot 17094  ndxcnx 17106  +gcplusg 17163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-sets 17077  df-slot 17095
This theorem is referenced by:  oppgbas  19265  oppgtset  19266  oppgle  19281  mgpbas  20065  mgpsca  20066  mgptset  20067  mgpds  20069
  Copyright terms: Public domain W3C validator