![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppglemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsplusg 19256 as of 18-Oct-2024. Lemma for oppgbas 19258. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppgbas.1 | β’ π = (oppgβπ ) |
oppglemOLD.2 | β’ πΈ = Slot π |
oppglemOLD.3 | β’ π β β |
oppglemOLD.4 | β’ π β 2 |
Ref | Expression |
---|---|
oppglemOLD | β’ (πΈβπ ) = (πΈβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppglemOLD.2 | . . . 4 β’ πΈ = Slot π | |
2 | oppglemOLD.3 | . . . 4 β’ π β β | |
3 | 1, 2 | ndxid 17135 | . . 3 β’ πΈ = Slot (πΈβndx) |
4 | oppglemOLD.4 | . . . 4 β’ π β 2 | |
5 | 1, 2 | ndxarg 17134 | . . . . 5 β’ (πΈβndx) = π |
6 | plusgndx 17228 | . . . . 5 β’ (+gβndx) = 2 | |
7 | 5, 6 | neeq12i 3006 | . . . 4 β’ ((πΈβndx) β (+gβndx) β π β 2) |
8 | 4, 7 | mpbir 230 | . . 3 β’ (πΈβndx) β (+gβndx) |
9 | 3, 8 | setsnid 17147 | . 2 β’ (πΈβπ ) = (πΈβ(π sSet β¨(+gβndx), tpos (+gβπ )β©)) |
10 | eqid 2731 | . . . 4 β’ (+gβπ ) = (+gβπ ) | |
11 | oppgbas.1 | . . . 4 β’ π = (oppgβπ ) | |
12 | 10, 11 | oppgval 19253 | . . 3 β’ π = (π sSet β¨(+gβndx), tpos (+gβπ )β©) |
13 | 12 | fveq2i 6895 | . 2 β’ (πΈβπ) = (πΈβ(π sSet β¨(+gβndx), tpos (+gβπ )β©)) |
14 | 9, 13 | eqtr4i 2762 | 1 β’ (πΈβπ ) = (πΈβπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 β wne 2939 β¨cop 4635 βcfv 6544 (class class class)co 7412 tpos ctpos 8213 βcn 12217 2c2 12272 sSet csts 17101 Slot cslot 17119 ndxcnx 17131 +gcplusg 17202 oppgcoppg 19251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-1cn 11171 ax-addcl 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-plusg 17215 df-oppg 19252 |
This theorem is referenced by: oppgbasOLD 19259 oppgtsetOLD 19261 oppgleOLD 32395 |
Copyright terms: Public domain | W3C validator |