Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgplus | Structured version Visualization version GIF version |
Description: Value of the addition operation of an opposite ring. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
oppgval.2 | ⊢ + = (+g‘𝑅) |
oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
oppgplusfval.4 | ⊢ ✚ = (+g‘𝑂) |
Ref | Expression |
---|---|
oppgplus | ⊢ (𝑋 ✚ 𝑌) = (𝑌 + 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgval.2 | . . . 4 ⊢ + = (+g‘𝑅) | |
2 | oppgval.3 | . . . 4 ⊢ 𝑂 = (oppg‘𝑅) | |
3 | oppgplusfval.4 | . . . 4 ⊢ ✚ = (+g‘𝑂) | |
4 | 1, 2, 3 | oppgplusfval 18961 | . . 3 ⊢ ✚ = tpos + |
5 | 4 | oveqi 7297 | . 2 ⊢ (𝑋 ✚ 𝑌) = (𝑋tpos + 𝑌) |
6 | ovtpos 8066 | . 2 ⊢ (𝑋tpos + 𝑌) = (𝑌 + 𝑋) | |
7 | 5, 6 | eqtri 2767 | 1 ⊢ (𝑋 ✚ 𝑌) = (𝑌 + 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6437 (class class class)co 7284 tpos ctpos 8050 +gcplusg 16971 oppgcoppg 18958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-1cn 10938 ax-addcl 10940 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-tpos 8051 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-nn 11983 df-2 12045 df-sets 16874 df-slot 16892 df-ndx 16904 df-plusg 16984 df-oppg 18959 |
This theorem is referenced by: oppgmnd 18970 oppgmndb 18971 oppgid 18972 oppggrp 18973 oppggrpb 18974 oppginv 18975 invoppggim 18976 oppgsubm 18978 oppgcntz 18980 gsumwrev 18982 oppglsm 19256 gsumzoppg 19554 oppgtmd 23257 tgpconncomp 23273 qustgpopn 23280 omndaddr 31342 ogrpaddltrd 31354 ogrpaddltrbid 31355 lsmsnorb2 31589 |
Copyright terms: Public domain | W3C validator |