Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgplus | Structured version Visualization version GIF version |
Description: Value of the addition operation of an opposite ring. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
oppgval.2 | ⊢ + = (+g‘𝑅) |
oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
oppgplusfval.4 | ⊢ ✚ = (+g‘𝑂) |
Ref | Expression |
---|---|
oppgplus | ⊢ (𝑋 ✚ 𝑌) = (𝑌 + 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgval.2 | . . . 4 ⊢ + = (+g‘𝑅) | |
2 | oppgval.3 | . . . 4 ⊢ 𝑂 = (oppg‘𝑅) | |
3 | oppgplusfval.4 | . . . 4 ⊢ ✚ = (+g‘𝑂) | |
4 | 1, 2, 3 | oppgplusfval 18940 | . . 3 ⊢ ✚ = tpos + |
5 | 4 | oveqi 7281 | . 2 ⊢ (𝑋 ✚ 𝑌) = (𝑋tpos + 𝑌) |
6 | ovtpos 8045 | . 2 ⊢ (𝑋tpos + 𝑌) = (𝑌 + 𝑋) | |
7 | 5, 6 | eqtri 2766 | 1 ⊢ (𝑋 ✚ 𝑌) = (𝑌 + 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6427 (class class class)co 7268 tpos ctpos 8029 +gcplusg 16950 oppgcoppg 18937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-1cn 10917 ax-addcl 10919 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-2nd 7822 df-tpos 8030 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-nn 11962 df-2 12024 df-sets 16853 df-slot 16871 df-ndx 16883 df-plusg 16963 df-oppg 18938 |
This theorem is referenced by: oppgmnd 18949 oppgmndb 18950 oppgid 18951 oppggrp 18952 oppggrpb 18953 oppginv 18954 invoppggim 18955 oppgsubm 18957 oppgcntz 18959 gsumwrev 18961 oppglsm 19235 gsumzoppg 19533 oppgtmd 23236 tgpconncomp 23252 qustgpopn 23259 omndaddr 31319 ogrpaddltrd 31331 ogrpaddltrbid 31332 lsmsnorb2 31566 |
Copyright terms: Public domain | W3C validator |