Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgbas | Structured version Visualization version GIF version |
Description: Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
oppgbas.2 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
oppgbas | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.2 | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | oppgbas.1 | . . 3 ⊢ 𝑂 = (oppg‘𝑅) | |
3 | df-base 16537 | . . 3 ⊢ Base = Slot 1 | |
4 | 1nn 11675 | . . 3 ⊢ 1 ∈ ℕ | |
5 | 1ne2 11872 | . . 3 ⊢ 1 ≠ 2 | |
6 | 2, 3, 4, 5 | oppglem 18535 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑂) |
7 | 1, 6 | eqtri 2782 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6333 1c1 10566 Basecbs 16531 oppgcoppg 18530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-tpos 7900 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-2 11727 df-ndx 16534 df-slot 16535 df-base 16537 df-sets 16538 df-plusg 16626 df-oppg 18531 |
This theorem is referenced by: oppgtopn 18538 oppgmnd 18539 oppgmndb 18540 oppgid 18541 oppggrp 18542 oppggrpb 18543 oppginv 18544 invoppggim 18545 oppgsubm 18547 oppgcntz 18549 oppgcntr 18550 gsumwrev 18551 oppglsm 18824 gsumzoppg 19122 oppgtmd 22787 tgpconncomp 22803 qustgpopn 22810 omndaddr 30849 ogrpaddltrd 30861 ogrpaddltrbid 30862 lsmsnorb2 31091 |
Copyright terms: Public domain | W3C validator |