Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd2 Structured version   Visualization version   GIF version

Theorem cdlemd2 40188
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
Hypotheses
Ref Expression
cdlemd2.l = (le‘𝐾)
cdlemd2.j = (join‘𝐾)
cdlemd2.a 𝐴 = (Atoms‘𝐾)
cdlemd2.h 𝐻 = (LHyp‘𝐾)
cdlemd2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemd2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))

Proof of Theorem cdlemd2
StepHypRef Expression
1 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑃) = (𝐺𝑃))
2 simp11 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12l 1287 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝐹𝑇)
4 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝐾 ∈ HL)
54hllatd 39352 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝐾 ∈ Lat)
6 simp21l 1291 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑃𝐴)
7 simp13 1206 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑅𝐴)
8 eqid 2730 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
9 cdlemd2.j . . . . . . . . . . 11 = (join‘𝐾)
10 cdlemd2.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
118, 9, 10hlatjcl 39355 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
124, 6, 7, 11syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝑃 𝑅) ∈ (Base‘𝐾))
13 simp11r 1286 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑊𝐻)
14 cdlemd2.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
158, 14lhpbase 39987 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1613, 15syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑊 ∈ (Base‘𝐾))
17 eqid 2730 . . . . . . . . . 10 (meet‘𝐾) = (meet‘𝐾)
188, 17latmcl 18405 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
195, 12, 16, 18syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → ((𝑃 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
20 cdlemd2.l . . . . . . . . . 10 = (le‘𝐾)
218, 20, 17latmle2 18430 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑅)(meet‘𝐾)𝑊) 𝑊)
225, 12, 16, 21syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → ((𝑃 𝑅)(meet‘𝐾)𝑊) 𝑊)
23 cdlemd2.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
248, 20, 14, 23ltrnval1 40123 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((𝑃 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 𝑅)(meet‘𝐾)𝑊) 𝑊)) → (𝐹‘((𝑃 𝑅)(meet‘𝐾)𝑊)) = ((𝑃 𝑅)(meet‘𝐾)𝑊))
252, 3, 19, 22, 24syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘((𝑃 𝑅)(meet‘𝐾)𝑊)) = ((𝑃 𝑅)(meet‘𝐾)𝑊))
26 simp12r 1288 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝐺𝑇)
278, 20, 14, 23ltrnval1 40123 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (((𝑃 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 𝑅)(meet‘𝐾)𝑊) 𝑊)) → (𝐺‘((𝑃 𝑅)(meet‘𝐾)𝑊)) = ((𝑃 𝑅)(meet‘𝐾)𝑊))
282, 26, 19, 22, 27syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐺‘((𝑃 𝑅)(meet‘𝐾)𝑊)) = ((𝑃 𝑅)(meet‘𝐾)𝑊))
2925, 28eqtr4d 2768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘((𝑃 𝑅)(meet‘𝐾)𝑊)) = (𝐺‘((𝑃 𝑅)(meet‘𝐾)𝑊)))
301, 29oveq12d 7407 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → ((𝐹𝑃) (𝐹‘((𝑃 𝑅)(meet‘𝐾)𝑊))) = ((𝐺𝑃) (𝐺‘((𝑃 𝑅)(meet‘𝐾)𝑊))))
318, 10atbase 39277 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
326, 31syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑃 ∈ (Base‘𝐾))
338, 9, 14, 23ltrnj 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))) → (𝐹‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))) = ((𝐹𝑃) (𝐹‘((𝑃 𝑅)(meet‘𝐾)𝑊))))
342, 3, 32, 19, 33syl112anc 1376 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))) = ((𝐹𝑃) (𝐹‘((𝑃 𝑅)(meet‘𝐾)𝑊))))
358, 9, 14, 23ltrnj 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))) → (𝐺‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))) = ((𝐺𝑃) (𝐺‘((𝑃 𝑅)(meet‘𝐾)𝑊))))
362, 26, 32, 19, 35syl112anc 1376 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐺‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))) = ((𝐺𝑃) (𝐺‘((𝑃 𝑅)(meet‘𝐾)𝑊))))
3730, 34, 363eqtr4d 2775 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))) = (𝐺‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))))
38 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑄) = (𝐺𝑄))
39 simp22l 1293 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑄𝐴)
408, 9, 10hlatjcl 39355 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
414, 39, 7, 40syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝑄 𝑅) ∈ (Base‘𝐾))
428, 17latmcl 18405 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑄 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
435, 41, 16, 42syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → ((𝑄 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))
448, 20, 17latmle2 18430 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑄 𝑅)(meet‘𝐾)𝑊) 𝑊)
455, 41, 16, 44syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → ((𝑄 𝑅)(meet‘𝐾)𝑊) 𝑊)
468, 20, 14, 23ltrnval1 40123 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((𝑄 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅)(meet‘𝐾)𝑊) 𝑊)) → (𝐹‘((𝑄 𝑅)(meet‘𝐾)𝑊)) = ((𝑄 𝑅)(meet‘𝐾)𝑊))
472, 3, 43, 45, 46syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘((𝑄 𝑅)(meet‘𝐾)𝑊)) = ((𝑄 𝑅)(meet‘𝐾)𝑊))
488, 20, 14, 23ltrnval1 40123 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (((𝑄 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅)(meet‘𝐾)𝑊) 𝑊)) → (𝐺‘((𝑄 𝑅)(meet‘𝐾)𝑊)) = ((𝑄 𝑅)(meet‘𝐾)𝑊))
492, 26, 43, 45, 48syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐺‘((𝑄 𝑅)(meet‘𝐾)𝑊)) = ((𝑄 𝑅)(meet‘𝐾)𝑊))
5047, 49eqtr4d 2768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘((𝑄 𝑅)(meet‘𝐾)𝑊)) = (𝐺‘((𝑄 𝑅)(meet‘𝐾)𝑊)))
5138, 50oveq12d 7407 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → ((𝐹𝑄) (𝐹‘((𝑄 𝑅)(meet‘𝐾)𝑊))) = ((𝐺𝑄) (𝐺‘((𝑄 𝑅)(meet‘𝐾)𝑊))))
528, 10atbase 39277 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
5339, 52syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑄 ∈ (Base‘𝐾))
548, 9, 14, 23ltrnj 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))) → (𝐹‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊))) = ((𝐹𝑄) (𝐹‘((𝑄 𝑅)(meet‘𝐾)𝑊))))
552, 3, 53, 43, 54syl112anc 1376 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊))) = ((𝐹𝑄) (𝐹‘((𝑄 𝑅)(meet‘𝐾)𝑊))))
568, 9, 14, 23ltrnj 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))) → (𝐺‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊))) = ((𝐺𝑄) (𝐺‘((𝑄 𝑅)(meet‘𝐾)𝑊))))
572, 26, 53, 43, 56syl112anc 1376 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐺‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊))) = ((𝐺𝑄) (𝐺‘((𝑄 𝑅)(meet‘𝐾)𝑊))))
5851, 55, 573eqtr4d 2775 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊))) = (𝐺‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊))))
5937, 58oveq12d 7407 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → ((𝐹‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐹‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))) = ((𝐺‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐺‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))))
608, 9latjcl 18404 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
615, 32, 19, 60syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
628, 9latjcl 18404 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
635, 53, 43, 62syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))
648, 17, 14, 23ltrnm 40120 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))) → (𝐹‘((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))) = ((𝐹‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐹‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))))
652, 3, 61, 63, 64syl112anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))) = ((𝐹‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐹‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))))
668, 17, 14, 23ltrnm 40120 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ ((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))) → (𝐺‘((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))) = ((𝐺‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐺‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))))
672, 26, 61, 63, 66syl112anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐺‘((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))) = ((𝐺‘(𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐺‘(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))))
6859, 65, 673eqtr4d 2775 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹‘((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))) = (𝐺‘((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))))
69 simp21 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
70 simp22 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
71 simp23l 1295 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑃𝑄)
72 simp23r 1296 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → ¬ 𝑅 (𝑃 𝑄))
737, 71, 723jca 1128 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))
7420, 9, 17, 10, 14cdlemd1 40187 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅 = ((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊))))
752, 69, 70, 73, 74syl13anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑅 = ((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊))))
7675fveq2d 6864 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐹‘((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))))
7775fveq2d 6864 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐺𝑅) = (𝐺‘((𝑃 ((𝑃 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ((𝑄 𝑅)(meet‘𝐾)𝑊)))))
7868, 76, 773eqtr4d 2775 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  lecple 17233  joincjn 18278  meetcmee 18279  Latclat 18396  Atomscatm 39251  HLchlt 39338  LHypclh 39973  LTrncltrn 40090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 39164  df-ol 39166  df-oml 39167  df-covers 39254  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094
This theorem is referenced by:  cdlemd4  40190  cdlemd5  40191
  Copyright terms: Public domain W3C validator