Proof of Theorem cdlemd2
Step | Hyp | Ref
| Expression |
1 | | simp3l 1199 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑃) = (𝐺‘𝑃)) |
2 | | simp11 1201 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simp12l 1284 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝐹 ∈ 𝑇) |
4 | | simp11l 1282 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝐾 ∈ HL) |
5 | 4 | hllatd 37305 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝐾 ∈ Lat) |
6 | | simp21l 1288 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑃 ∈ 𝐴) |
7 | | simp13 1203 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑅 ∈ 𝐴) |
8 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝐾) |
9 | | cdlemd2.j |
. . . . . . . . . . 11
⊢ ∨ =
(join‘𝐾) |
10 | | cdlemd2.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) |
11 | 8, 9, 10 | hlatjcl 37308 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
12 | 4, 6, 7, 11 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
13 | | simp11r 1283 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑊 ∈ 𝐻) |
14 | | cdlemd2.h |
. . . . . . . . . . 11
⊢ 𝐻 = (LHyp‘𝐾) |
15 | 8, 14 | lhpbase 37939 |
. . . . . . . . . 10
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
16 | 13, 15 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑊 ∈ (Base‘𝐾)) |
17 | | eqid 2738 |
. . . . . . . . . 10
⊢
(meet‘𝐾) =
(meet‘𝐾) |
18 | 8, 17 | latmcl 18073 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
19 | 5, 12, 16, 18 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
20 | | cdlemd2.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
21 | 8, 20, 17 | latmle2 18098 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ≤ 𝑊) |
22 | 5, 12, 16, 21 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ≤ 𝑊) |
23 | | cdlemd2.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
24 | 8, 20, 14, 23 | ltrnval1 38075 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ≤ 𝑊)) → (𝐹‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) = ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) |
25 | 2, 3, 19, 22, 24 | syl112anc 1372 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) = ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) |
26 | | simp12r 1285 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝐺 ∈ 𝑇) |
27 | 8, 20, 14, 23 | ltrnval1 38075 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ≤ 𝑊)) → (𝐺‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) = ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) |
28 | 2, 26, 19, 22, 27 | syl112anc 1372 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐺‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) = ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) |
29 | 25, 28 | eqtr4d 2781 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) = (𝐺‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))) |
30 | 1, 29 | oveq12d 7273 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ((𝐹‘𝑃) ∨ (𝐹‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐺‘𝑃) ∨ (𝐺‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
31 | 8, 10 | atbase 37230 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
32 | 6, 31 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑃 ∈ (Base‘𝐾)) |
33 | 8, 9, 14, 23 | ltrnj 38073 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))) → (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐹‘𝑃) ∨ (𝐹‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
34 | 2, 3, 32, 19, 33 | syl112anc 1372 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐹‘𝑃) ∨ (𝐹‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
35 | 8, 9, 14, 23 | ltrnj 38073 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))) → (𝐺‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐺‘𝑃) ∨ (𝐺‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
36 | 2, 26, 32, 19, 35 | syl112anc 1372 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐺‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐺‘𝑃) ∨ (𝐺‘((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
37 | 30, 34, 36 | 3eqtr4d 2788 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))) = (𝐺‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
38 | | simp3r 1200 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑄) = (𝐺‘𝑄)) |
39 | | simp22l 1290 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑄 ∈ 𝐴) |
40 | 8, 9, 10 | hlatjcl 37308 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
41 | 4, 39, 7, 40 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
42 | 8, 17 | latmcl 18073 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
43 | 5, 41, 16, 42 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) |
44 | 8, 20, 17 | latmle2 18098 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ≤ 𝑊) |
45 | 5, 41, 16, 44 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ≤ 𝑊) |
46 | 8, 20, 14, 23 | ltrnval1 38075 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ≤ 𝑊)) → (𝐹‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) = ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) |
47 | 2, 3, 43, 45, 46 | syl112anc 1372 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) = ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) |
48 | 8, 20, 14, 23 | ltrnval1 38075 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ≤ 𝑊)) → (𝐺‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) = ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) |
49 | 2, 26, 43, 45, 48 | syl112anc 1372 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐺‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) = ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) |
50 | 47, 49 | eqtr4d 2781 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) = (𝐺‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))) |
51 | 38, 50 | oveq12d 7273 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ((𝐹‘𝑄) ∨ (𝐹‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐺‘𝑄) ∨ (𝐺‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
52 | 8, 10 | atbase 37230 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
53 | 39, 52 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑄 ∈ (Base‘𝐾)) |
54 | 8, 9, 14, 23 | ltrnj 38073 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))) → (𝐹‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐹‘𝑄) ∨ (𝐹‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
55 | 2, 3, 53, 43, 54 | syl112anc 1372 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐹‘𝑄) ∨ (𝐹‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
56 | 8, 9, 14, 23 | ltrnj 38073 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾))) → (𝐺‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐺‘𝑄) ∨ (𝐺‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
57 | 2, 26, 53, 43, 56 | syl112anc 1372 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐺‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))) = ((𝐺‘𝑄) ∨ (𝐺‘((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
58 | 51, 55, 57 | 3eqtr4d 2788 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))) = (𝐺‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
59 | 37, 58 | oveq12d 7273 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ((𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐹‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) = ((𝐺‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐺‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))))) |
60 | 8, 9 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾)) |
61 | 5, 32, 19, 60 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾)) |
62 | 8, 9 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊) ∈ (Base‘𝐾)) → (𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾)) |
63 | 5, 53, 43, 62 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾)) |
64 | 8, 17, 14, 23 | ltrnm 38072 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))) → (𝐹‘((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) = ((𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐹‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))))) |
65 | 2, 3, 61, 63, 64 | syl112anc 1372 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) = ((𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐹‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))))) |
66 | 8, 17, 14, 23 | ltrnm 38072 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)) ∈ (Base‘𝐾))) → (𝐺‘((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) = ((𝐺‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐺‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))))) |
67 | 2, 26, 61, 63, 66 | syl112anc 1372 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐺‘((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) = ((𝐺‘(𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊)))(meet‘𝐾)(𝐺‘(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))))) |
68 | 59, 65, 67 | 3eqtr4d 2788 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) = (𝐺‘((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))))) |
69 | | simp21 1204 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
70 | | simp22 1205 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
71 | | simp23l 1292 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑃 ≠ 𝑄) |
72 | | simp23r 1293 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
73 | 7, 71, 72 | 3jca 1126 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑅 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) |
74 | 20, 9, 17, 10, 14 | cdlemd1 38139 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 = ((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
75 | 2, 69, 70, 73, 74 | syl13anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑅 = ((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊)))) |
76 | 75 | fveq2d 6760 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐹‘((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))))) |
77 | 75 | fveq2d 6760 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐺‘𝑅) = (𝐺‘((𝑃 ∨ ((𝑃 ∨ 𝑅)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄 ∨ ((𝑄 ∨ 𝑅)(meet‘𝐾)𝑊))))) |
78 | 68, 76, 77 | 3eqtr4d 2788 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐺‘𝑅)) |