Proof of Theorem cdlemg2fv2
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp23 1206 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
3 | | simp1l 1195 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37305 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
5 | | simp23l 1292 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑅 ∈ 𝐴) |
6 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | cdlemg2j.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 6, 7 | atbase 37230 |
. . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
9 | 5, 8 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑅 ∈ (Base‘𝐾)) |
10 | | simp1r 1196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ 𝐻) |
11 | | simp21l 1288 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑃 ∈ 𝐴) |
12 | | simp22l 1290 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑄 ∈ 𝐴) |
13 | | cdlemg2j.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
14 | | cdlemg2j.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
15 | | cdlemg2j.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
16 | | cdlemg2inv.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
17 | | cdlemg2j.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
18 | 13, 14, 15, 7, 16, 17, 6 | cdleme0aa 38151 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ (Base‘𝐾)) |
19 | 3, 10, 11, 12, 18 | syl211anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑈 ∈ (Base‘𝐾)) |
20 | 6, 14 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
21 | 4, 9, 19, 20 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
22 | | simp23r 1293 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ¬ 𝑅 ≤ 𝑊) |
23 | 6, 13, 14 | latlej1 18081 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑅 ≤ (𝑅 ∨ 𝑈)) |
24 | 4, 9, 19, 23 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑅 ≤ (𝑅 ∨ 𝑈)) |
25 | 6, 16 | lhpbase 37939 |
. . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
26 | 10, 25 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ (Base‘𝐾)) |
27 | 6, 13 | lattr 18077 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑅 ≤ (𝑅 ∨ 𝑈) ∧ (𝑅 ∨ 𝑈) ≤ 𝑊) → 𝑅 ≤ 𝑊)) |
28 | 4, 9, 21, 26, 27 | syl13anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝑅 ≤ (𝑅 ∨ 𝑈) ∧ (𝑅 ∨ 𝑈) ≤ 𝑊) → 𝑅 ≤ 𝑊)) |
29 | 24, 28 | mpand 691 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝑅 ∨ 𝑈) ≤ 𝑊 → 𝑅 ≤ 𝑊)) |
30 | 22, 29 | mtod 197 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ¬ (𝑅 ∨ 𝑈) ≤ 𝑊) |
31 | 21, 30 | jca 511 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ ¬ (𝑅 ∨ 𝑈) ≤ 𝑊)) |
32 | | simp3 1136 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) |
33 | | eqid 2738 |
. . . . . . . 8
⊢
(0.‘𝐾) =
(0.‘𝐾) |
34 | 13, 15, 33, 7, 16 | lhpmat 37971 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
35 | 1, 2, 34 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
36 | 35 | oveq1d 7270 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝑅 ∧ 𝑊) ∨ 𝑈) = ((0.‘𝐾) ∨ 𝑈)) |
37 | 6, 14, 7 | hlatjcl 37308 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
38 | 3, 11, 12, 37 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
39 | 6, 13, 15 | latmle2 18098 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
40 | 4, 38, 26, 39 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
41 | 17, 40 | eqbrtrid 5105 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝑈 ≤ 𝑊) |
42 | 6, 13, 14, 15, 7 | atmod4i2 37808 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 ≤ 𝑊) → ((𝑅 ∧ 𝑊) ∨ 𝑈) = ((𝑅 ∨ 𝑈) ∧ 𝑊)) |
43 | 3, 5, 19, 26, 41, 42 | syl131anc 1381 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝑅 ∧ 𝑊) ∨ 𝑈) = ((𝑅 ∨ 𝑈) ∧ 𝑊)) |
44 | | hlol 37302 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
45 | 3, 44 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OL) |
46 | 6, 14, 33 | olj02 37167 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ 𝑈) = 𝑈) |
47 | 45, 19, 46 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((0.‘𝐾) ∨ 𝑈) = 𝑈) |
48 | 36, 43, 47 | 3eqtr3d 2786 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝑅 ∨ 𝑈) ∧ 𝑊) = 𝑈) |
49 | 48 | oveq2d 7271 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ 𝑊)) = (𝑅 ∨ 𝑈)) |
50 | | cdlemg2inv.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
51 | 16, 50, 13, 14, 7, 15, 6 | cdlemg2fv 38540 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ ((𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ ¬ (𝑅 ∨ 𝑈) ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑅 ∨ ((𝑅 ∨ 𝑈) ∧ 𝑊)) = (𝑅 ∨ 𝑈))) → (𝐹‘(𝑅 ∨ 𝑈)) = ((𝐹‘𝑅) ∨ ((𝑅 ∨ 𝑈) ∧ 𝑊))) |
52 | 1, 2, 31, 32, 49, 51 | syl122anc 1377 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑅 ∨ 𝑈)) = ((𝐹‘𝑅) ∨ ((𝑅 ∨ 𝑈) ∧ 𝑊))) |
53 | 48 | oveq2d 7271 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑅) ∨ ((𝑅 ∨ 𝑈) ∧ 𝑊)) = ((𝐹‘𝑅) ∨ 𝑈)) |
54 | 52, 53 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑅 ∨ 𝑈)) = ((𝐹‘𝑅) ∨ 𝑈)) |