Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2fv2 Structured version   Visualization version   GIF version

Theorem cdlemg2fv2 40579
Description: Value of a translation in terms of an associated atom. TODO: FIX COMMENT. TODO: Is this useful elsewhere e.g. around cdlemeg46fjv 40502 that use more complex proofs? TODO: Use ltrnj 40111 to vastly simplify. (Contributed by NM, 23-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2inv.h 𝐻 = (LHyp‘𝐾)
cdlemg2inv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg2j.l = (le‘𝐾)
cdlemg2j.j = (join‘𝐾)
cdlemg2j.a 𝐴 = (Atoms‘𝐾)
cdlemg2j.m = (meet‘𝐾)
cdlemg2j.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdlemg2fv2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝐹‘(𝑅 𝑈)) = ((𝐹𝑅) 𝑈))

Proof of Theorem cdlemg2fv2
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp23 1209 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
3 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝐾 ∈ HL)
43hllatd 39342 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
5 simp23l 1295 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑅𝐴)
6 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
7 cdlemg2j.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7atbase 39267 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
95, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑅 ∈ (Base‘𝐾))
10 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑊𝐻)
11 simp21l 1291 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑃𝐴)
12 simp22l 1293 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑄𝐴)
13 cdlemg2j.l . . . . . . 7 = (le‘𝐾)
14 cdlemg2j.j . . . . . . 7 = (join‘𝐾)
15 cdlemg2j.m . . . . . . 7 = (meet‘𝐾)
16 cdlemg2inv.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
17 cdlemg2j.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
1813, 14, 15, 7, 16, 17, 6cdleme0aa 40189 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈 ∈ (Base‘𝐾))
193, 10, 11, 12, 18syl211anc 1378 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑈 ∈ (Base‘𝐾))
206, 14latjcl 18363 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑅 𝑈) ∈ (Base‘𝐾))
214, 9, 19, 20syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝑅 𝑈) ∈ (Base‘𝐾))
22 simp23r 1296 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ¬ 𝑅 𝑊)
236, 13, 14latlej1 18372 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑅 (𝑅 𝑈))
244, 9, 19, 23syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑅 (𝑅 𝑈))
256, 16lhpbase 39977 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2610, 25syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑊 ∈ (Base‘𝐾))
276, 13lattr 18368 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑅 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑊) → 𝑅 𝑊))
284, 9, 21, 26, 27syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((𝑅 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑊) → 𝑅 𝑊))
2924, 28mpand 695 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((𝑅 𝑈) 𝑊𝑅 𝑊))
3022, 29mtod 198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ¬ (𝑅 𝑈) 𝑊)
3121, 30jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((𝑅 𝑈) ∈ (Base‘𝐾) ∧ ¬ (𝑅 𝑈) 𝑊))
32 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝐹𝑇)
33 eqid 2729 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
3413, 15, 33, 7, 16lhpmat 40009 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
351, 2, 34syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝑅 𝑊) = (0.‘𝐾))
3635oveq1d 7368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((𝑅 𝑊) 𝑈) = ((0.‘𝐾) 𝑈))
376, 14, 7hlatjcl 39345 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
383, 11, 12, 37syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝑃 𝑄) ∈ (Base‘𝐾))
396, 13, 15latmle2 18389 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
404, 38, 26, 39syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((𝑃 𝑄) 𝑊) 𝑊)
4117, 40eqbrtrid 5130 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝑈 𝑊)
426, 13, 14, 15, 7atmod4i2 39846 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → ((𝑅 𝑊) 𝑈) = ((𝑅 𝑈) 𝑊))
433, 5, 19, 26, 41, 42syl131anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((𝑅 𝑊) 𝑈) = ((𝑅 𝑈) 𝑊))
44 hlol 39339 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
453, 44syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → 𝐾 ∈ OL)
466, 14, 33olj02 39204 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑈) = 𝑈)
4745, 19, 46syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((0.‘𝐾) 𝑈) = 𝑈)
4836, 43, 473eqtr3d 2772 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((𝑅 𝑈) 𝑊) = 𝑈)
4948oveq2d 7369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝑅 ((𝑅 𝑈) 𝑊)) = (𝑅 𝑈))
50 cdlemg2inv.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5116, 50, 13, 14, 7, 15, 6cdlemg2fv 40578 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ ((𝑅 𝑈) ∈ (Base‘𝐾) ∧ ¬ (𝑅 𝑈) 𝑊)) ∧ (𝐹𝑇 ∧ (𝑅 ((𝑅 𝑈) 𝑊)) = (𝑅 𝑈))) → (𝐹‘(𝑅 𝑈)) = ((𝐹𝑅) ((𝑅 𝑈) 𝑊)))
521, 2, 31, 32, 49, 51syl122anc 1381 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝐹‘(𝑅 𝑈)) = ((𝐹𝑅) ((𝑅 𝑈) 𝑊)))
5348oveq2d 7369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑅) ((𝑅 𝑈) 𝑊)) = ((𝐹𝑅) 𝑈))
5452, 53eqtrd 2764 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝐹𝑇) → (𝐹‘(𝑅 𝑈)) = ((𝐹𝑅) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  0.cp0 18345  Latclat 18355  OLcol 39152  Atomscatm 39241  HLchlt 39328  LHypclh 39963  LTrncltrn 40080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-undef 8213  df-map 8762  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138
This theorem is referenced by:  cdlemg2l  40582
  Copyright terms: Public domain W3C validator