Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2fv2 Structured version   Visualization version   GIF version

Theorem cdlemg2fv2 39775
Description: Value of a translation in terms of an associated atom. TODO: FIX COMMENT. TODO: Is this useful elsewhere e.g. around cdlemeg46fjv 39698 that use more complex proofs? TODO: Use ltrnj 39307 to vastly simplify. (Contributed by NM, 23-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2inv.h 𝐻 = (LHypβ€˜πΎ)
cdlemg2inv.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg2j.l ≀ = (leβ€˜πΎ)
cdlemg2j.j ∨ = (joinβ€˜πΎ)
cdlemg2j.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg2j.m ∧ = (meetβ€˜πΎ)
cdlemg2j.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
cdlemg2fv2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (πΉβ€˜(𝑅 ∨ π‘ˆ)) = ((πΉβ€˜π‘…) ∨ π‘ˆ))

Proof of Theorem cdlemg2fv2
StepHypRef Expression
1 simp1 1135 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp23 1207 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
3 simp1l 1196 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ HL)
43hllatd 38538 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ Lat)
5 simp23l 1293 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝑅 ∈ 𝐴)
6 eqid 2731 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 cdlemg2j.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
86, 7atbase 38463 . . . . . 6 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
95, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
10 simp1r 1197 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ π‘Š ∈ 𝐻)
11 simp21l 1289 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝑃 ∈ 𝐴)
12 simp22l 1291 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝑄 ∈ 𝐴)
13 cdlemg2j.l . . . . . . 7 ≀ = (leβ€˜πΎ)
14 cdlemg2j.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
15 cdlemg2j.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
16 cdlemg2inv.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
17 cdlemg2j.u . . . . . . 7 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
1813, 14, 15, 7, 16, 17, 6cdleme0aa 39385 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
193, 10, 11, 12, 18syl211anc 1375 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
206, 14latjcl 18397 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
214, 9, 19, 20syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
22 simp23r 1294 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ Β¬ 𝑅 ≀ π‘Š)
236, 13, 14latlej1 18406 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ 𝑅 ≀ (𝑅 ∨ π‘ˆ))
244, 9, 19, 23syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝑅 ≀ (𝑅 ∨ π‘ˆ))
256, 16lhpbase 39173 . . . . . . . 8 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2610, 25syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ π‘Š ∈ (Baseβ€˜πΎ))
276, 13lattr 18402 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ ((𝑅 ≀ (𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ π‘ˆ) ≀ π‘Š) β†’ 𝑅 ≀ π‘Š))
284, 9, 21, 26, 27syl13anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑅 ≀ (𝑅 ∨ π‘ˆ) ∧ (𝑅 ∨ π‘ˆ) ≀ π‘Š) β†’ 𝑅 ≀ π‘Š))
2924, 28mpand 692 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑅 ∨ π‘ˆ) ≀ π‘Š β†’ 𝑅 ≀ π‘Š))
3022, 29mtod 197 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ Β¬ (𝑅 ∨ π‘ˆ) ≀ π‘Š)
3121, 30jca 511 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ Β¬ (𝑅 ∨ π‘ˆ) ≀ π‘Š))
32 simp3 1137 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ 𝑇)
33 eqid 2731 . . . . . . . 8 (0.β€˜πΎ) = (0.β€˜πΎ)
3413, 15, 33, 7, 16lhpmat 39205 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 ∧ π‘Š) = (0.β€˜πΎ))
351, 2, 34syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝑅 ∧ π‘Š) = (0.β€˜πΎ))
3635oveq1d 7427 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑅 ∧ π‘Š) ∨ π‘ˆ) = ((0.β€˜πΎ) ∨ π‘ˆ))
376, 14, 7hlatjcl 38541 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
383, 11, 12, 37syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
396, 13, 15latmle2 18423 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
404, 38, 26, 39syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
4117, 40eqbrtrid 5183 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ π‘ˆ ≀ π‘Š)
426, 13, 14, 15, 7atmod4i2 39042 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ π‘ˆ ≀ π‘Š) β†’ ((𝑅 ∧ π‘Š) ∨ π‘ˆ) = ((𝑅 ∨ π‘ˆ) ∧ π‘Š))
433, 5, 19, 26, 41, 42syl131anc 1382 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑅 ∧ π‘Š) ∨ π‘ˆ) = ((𝑅 ∨ π‘ˆ) ∧ π‘Š))
44 hlol 38535 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
453, 44syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ OL)
466, 14, 33olj02 38400 . . . . . 6 ((𝐾 ∈ OL ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ) ∨ π‘ˆ) = π‘ˆ)
4745, 19, 46syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((0.β€˜πΎ) ∨ π‘ˆ) = π‘ˆ)
4836, 43, 473eqtr3d 2779 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑅 ∨ π‘ˆ) ∧ π‘Š) = π‘ˆ)
4948oveq2d 7428 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ π‘Š)) = (𝑅 ∨ π‘ˆ))
50 cdlemg2inv.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5116, 50, 13, 14, 7, 15, 6cdlemg2fv 39774 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ ((𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ Β¬ (𝑅 ∨ π‘ˆ) ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ (𝑅 ∨ ((𝑅 ∨ π‘ˆ) ∧ π‘Š)) = (𝑅 ∨ π‘ˆ))) β†’ (πΉβ€˜(𝑅 ∨ π‘ˆ)) = ((πΉβ€˜π‘…) ∨ ((𝑅 ∨ π‘ˆ) ∧ π‘Š)))
521, 2, 31, 32, 49, 51syl122anc 1378 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (πΉβ€˜(𝑅 ∨ π‘ˆ)) = ((πΉβ€˜π‘…) ∨ ((𝑅 ∨ π‘ˆ) ∧ π‘Š)))
5348oveq2d 7428 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((πΉβ€˜π‘…) ∨ ((𝑅 ∨ π‘ˆ) ∧ π‘Š)) = ((πΉβ€˜π‘…) ∨ π‘ˆ))
5452, 53eqtrd 2771 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (πΉβ€˜(𝑅 ∨ π‘ˆ)) = ((πΉβ€˜π‘…) ∨ π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  lecple 17209  joincjn 18269  meetcmee 18270  0.cp0 18381  Latclat 18389  OLcol 38348  Atomscatm 38437  HLchlt 38524  LHypclh 39159  LTrncltrn 39276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-riotaBAD 38127
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-undef 8262  df-map 8826  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163  df-laut 39164  df-ldil 39279  df-ltrn 39280  df-trl 39334
This theorem is referenced by:  cdlemg2l  39778
  Copyright terms: Public domain W3C validator