Proof of Theorem cdleme11l
Step | Hyp | Ref
| Expression |
1 | | simp11 1200 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp12 1201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simp13l 1285 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑄 ∈ 𝐴) |
4 | | simp21 1203 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
5 | | simp22l 1289 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑇 ∈ 𝐴) |
6 | | simp23l 1291 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑃 ≠ 𝑄) |
7 | | simp23r 1292 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ≠ 𝑇) |
8 | | simp31 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
9 | | simp33 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑈 ≤ (𝑆 ∨ 𝑇)) |
10 | | cdleme12.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
11 | | cdleme12.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
12 | | cdleme12.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
13 | | cdleme12.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
14 | | cdleme12.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
15 | | cdleme12.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
16 | | eqid 2758 |
. . . 4
⊢ ((𝑃 ∨ 𝑆) ∧ 𝑊) = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
17 | | eqid 2758 |
. . . 4
⊢ ((𝑃 ∨ 𝑇) ∧ 𝑊) = ((𝑃 ∨ 𝑇) ∧ 𝑊) |
18 | 10, 11, 12, 13, 14, 15, 16, 17 | cdleme11e 37839 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≠ ((𝑃 ∨ 𝑇) ∧ 𝑊)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 18 | syl333anc 1399 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≠ ((𝑃 ∨ 𝑇) ∧ 𝑊)) |
20 | | oveq2 7158 |
. . . . . . 7
⊢ (𝐹 = 𝐺 → (𝑄 ∨ 𝐹) = (𝑄 ∨ 𝐺)) |
21 | 20 | oveq1d 7165 |
. . . . . 6
⊢ (𝐹 = 𝐺 → ((𝑄 ∨ 𝐹) ∧ 𝑊) = ((𝑄 ∨ 𝐺) ∧ 𝑊)) |
22 | 21 | adantl 485 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) ∧ 𝐹 = 𝐺) → ((𝑄 ∨ 𝐹) ∧ 𝑊) = ((𝑄 ∨ 𝐺) ∧ 𝑊)) |
23 | | simp13 1202 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
24 | | cdleme12.f |
. . . . . . . 8
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
25 | 10, 11, 12, 13, 14, 15, 16, 15, 24 | cdleme11k 37844 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑆) ∧ 𝑊) = ((𝑄 ∨ 𝐹) ∧ 𝑊)) |
26 | 1, 2, 23, 4, 6, 8,
25 | syl132anc 1385 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝑆) ∧ 𝑊) = ((𝑄 ∨ 𝐹) ∧ 𝑊)) |
27 | 26 | adantr 484 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) ∧ 𝐹 = 𝐺) → ((𝑃 ∨ 𝑆) ∧ 𝑊) = ((𝑄 ∨ 𝐹) ∧ 𝑊)) |
28 | | simp22 1204 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) |
29 | | simp32 1207 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
30 | | cdleme12.g |
. . . . . . . 8
⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
31 | 10, 11, 12, 13, 14, 15, 17, 15, 30 | cdleme11k 37844 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑇) ∧ 𝑊) = ((𝑄 ∨ 𝐺) ∧ 𝑊)) |
32 | 1, 2, 23, 28, 6, 29, 31 | syl132anc 1385 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝑇) ∧ 𝑊) = ((𝑄 ∨ 𝐺) ∧ 𝑊)) |
33 | 32 | adantr 484 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) ∧ 𝐹 = 𝐺) → ((𝑃 ∨ 𝑇) ∧ 𝑊) = ((𝑄 ∨ 𝐺) ∧ 𝑊)) |
34 | 22, 27, 33 | 3eqtr4d 2803 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) ∧ 𝐹 = 𝐺) → ((𝑃 ∨ 𝑆) ∧ 𝑊) = ((𝑃 ∨ 𝑇) ∧ 𝑊)) |
35 | 34 | ex 416 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝐹 = 𝐺 → ((𝑃 ∨ 𝑆) ∧ 𝑊) = ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
36 | 35 | necon3d 2972 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (((𝑃 ∨ 𝑆) ∧ 𝑊) ≠ ((𝑃 ∨ 𝑇) ∧ 𝑊) → 𝐹 ≠ 𝐺)) |
37 | 19, 36 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐹 ≠ 𝐺) |