Proof of Theorem cdlemc5
Step | Hyp | Ref
| Expression |
1 | | simp1l 1194 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝐾 ∈ HL) |
2 | | simp23l 1291 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑄 ∈ 𝐴) |
3 | | simp1 1133 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | | simp21 1203 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝐹 ∈ 𝑇) |
5 | | cdlemc3.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
6 | | cdlemc3.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | cdlemc3.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
8 | | cdlemc3.t |
. . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
9 | 5, 6, 7, 8 | ltrnat 37716 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐹‘𝑄) ∈ 𝐴) |
10 | 3, 4, 2, 9 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) ∈ 𝐴) |
11 | | cdlemc3.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
12 | 5, 11, 6 | hlatlej2 36952 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) → (𝐹‘𝑄) ≤ (𝑄 ∨ (𝐹‘𝑄))) |
13 | 1, 2, 10, 12 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) ≤ (𝑄 ∨ (𝐹‘𝑄))) |
14 | | simp23 1205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
15 | | cdlemc3.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
16 | 5, 11, 6, 7, 8, 15 | trljat1 37742 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑄 ∨ (𝑅‘𝐹)) = (𝑄 ∨ (𝐹‘𝑄))) |
17 | 3, 4, 14, 16 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑄 ∨ (𝑅‘𝐹)) = (𝑄 ∨ (𝐹‘𝑄))) |
18 | 13, 17 | breqtrrd 5060 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) ≤ (𝑄 ∨ (𝑅‘𝐹))) |
19 | | simp22 1204 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
20 | | cdlemc3.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
21 | 5, 11, 20, 6, 7, 8 | cdlemc2 37768 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘𝑄) ≤ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
22 | 3, 4, 19, 14, 21 | syl112anc 1371 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) ≤ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
23 | 1 | hllatd 36940 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat) |
24 | | eqid 2758 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
25 | 24, 6 | atbase 36865 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
26 | 2, 25 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑄 ∈ (Base‘𝐾)) |
27 | 24, 7, 8 | ltrncl 37701 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝐹‘𝑄) ∈ (Base‘𝐾)) |
28 | 3, 4, 26, 27 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) ∈ (Base‘𝐾)) |
29 | 24, 7, 8, 15 | trlcl 37740 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
30 | 3, 4, 29 | syl2anc 587 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
31 | 24, 11 | latjcl 17727 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅‘𝐹) ∈ (Base‘𝐾)) → (𝑄 ∨ (𝑅‘𝐹)) ∈ (Base‘𝐾)) |
32 | 23, 26, 30, 31 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑄 ∨ (𝑅‘𝐹)) ∈ (Base‘𝐾)) |
33 | | simp22l 1289 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑃 ∈ 𝐴) |
34 | 24, 6 | atbase 36865 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
35 | 33, 34 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾)) |
36 | 24, 7, 8 | ltrncl 37701 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
37 | 3, 4, 35, 36 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
38 | 24, 11, 6 | hlatjcl 36943 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
39 | 1, 33, 2, 38 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
40 | | simp1r 1195 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑊 ∈ 𝐻) |
41 | 24, 7 | lhpbase 37574 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
42 | 40, 41 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑊 ∈ (Base‘𝐾)) |
43 | 24, 20 | latmcl 17728 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
44 | 23, 39, 42, 43 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
45 | 24, 11 | latjcl 17727 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝐹‘𝑃) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) → ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾)) |
46 | 23, 37, 44, 45 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾)) |
47 | 24, 5, 20 | latlem12 17754 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝐹‘𝑄) ∈ (Base‘𝐾) ∧ (𝑄 ∨ (𝑅‘𝐹)) ∈ (Base‘𝐾) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾))) → (((𝐹‘𝑄) ≤ (𝑄 ∨ (𝑅‘𝐹)) ∧ (𝐹‘𝑄) ≤ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ↔ (𝐹‘𝑄) ≤ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))))) |
48 | 23, 28, 32, 46, 47 | syl13anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (((𝐹‘𝑄) ≤ (𝑄 ∨ (𝑅‘𝐹)) ∧ (𝐹‘𝑄) ≤ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ↔ (𝐹‘𝑄) ≤ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))))) |
49 | 18, 22, 48 | mpbi2and 711 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) ≤ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
50 | | hlatl 36936 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
51 | 1, 50 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝐾 ∈ AtLat) |
52 | | simp3r 1199 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑃) ≠ 𝑃) |
53 | 5, 6, 7, 8, 15 | trlat 37745 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
54 | 3, 19, 4, 52, 53 | syl112anc 1371 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
55 | 5, 7, 8, 15 | trlle 37760 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
56 | 3, 4, 55 | syl2anc 587 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ≤ 𝑊) |
57 | | simp23r 1292 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ¬ 𝑄 ≤ 𝑊) |
58 | | nbrne2 5052 |
. . . . . . 7
⊢ (((𝑅‘𝐹) ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊) → (𝑅‘𝐹) ≠ 𝑄) |
59 | 58 | necomd 3006 |
. . . . . 6
⊢ (((𝑅‘𝐹) ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊) → 𝑄 ≠ (𝑅‘𝐹)) |
60 | 56, 57, 59 | syl2anc 587 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑄 ≠ (𝑅‘𝐹)) |
61 | | eqid 2758 |
. . . . . 6
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
62 | 11, 6, 61 | llni2 37088 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (𝑅‘𝐹) ∈ 𝐴) ∧ 𝑄 ≠ (𝑅‘𝐹)) → (𝑄 ∨ (𝑅‘𝐹)) ∈ (LLines‘𝐾)) |
63 | 1, 2, 54, 60, 62 | syl31anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑄 ∨ (𝑅‘𝐹)) ∈ (LLines‘𝐾)) |
64 | 5, 6, 7, 8 | ltrnat 37716 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
65 | 3, 4, 33, 64 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑃) ∈ 𝐴) |
66 | 5, 11, 6 | hlatlej1 36951 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃))) |
67 | 1, 33, 65, 66 | syl3anc 1368 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃))) |
68 | | simp3l 1198 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) |
69 | | nbrne2 5052 |
. . . . . . 7
⊢ ((𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝑃 ≠ 𝑄) |
70 | 67, 68, 69 | syl2anc 587 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑃 ≠ 𝑄) |
71 | 5, 11, 20, 6, 7 | lhpat 37619 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
72 | 3, 19, 2, 70, 71 | syl112anc 1371 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
73 | 24, 5, 20 | latmle2 17753 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
74 | 23, 39, 42, 73 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
75 | 5, 6, 7, 8 | ltrnel 37715 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
76 | 75 | simprd 499 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ (𝐹‘𝑃) ≤ 𝑊) |
77 | 3, 4, 19, 76 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ¬ (𝐹‘𝑃) ≤ 𝑊) |
78 | | nbrne2 5052 |
. . . . . . 7
⊢ ((((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≠ (𝐹‘𝑃)) |
79 | 78 | necomd 3006 |
. . . . . 6
⊢ ((((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊) → (𝐹‘𝑃) ≠ ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
80 | 74, 77, 79 | syl2anc 587 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑃) ≠ ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
81 | 11, 6, 61 | llni2 37088 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝐹‘𝑃) ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) ∧ (𝐹‘𝑃) ≠ ((𝑃 ∨ 𝑄) ∧ 𝑊)) → ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (LLines‘𝐾)) |
82 | 1, 65, 72, 80, 81 | syl31anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (LLines‘𝐾)) |
83 | 5, 11, 20, 6, 7, 8,
15 | cdlemc4 37770 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝑄 ∨ (𝑅‘𝐹)) ≠ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
84 | 83 | 3adant3r 1178 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑄 ∨ (𝑅‘𝐹)) ≠ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
85 | 24, 20 | latmcl 17728 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ (𝑅‘𝐹)) ∈ (Base‘𝐾) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾)) → ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ∈ (Base‘𝐾)) |
86 | 23, 32, 46, 85 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ∈ (Base‘𝐾)) |
87 | | eqid 2758 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
88 | 24, 5, 87, 6 | atlen0 36886 |
. . . . 5
⊢ (((𝐾 ∈ AtLat ∧ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ∈ (Base‘𝐾) ∧ (𝐹‘𝑄) ∈ 𝐴) ∧ (𝐹‘𝑄) ≤ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) → ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ≠ (0.‘𝐾)) |
89 | 51, 86, 10, 49, 88 | syl31anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ≠ (0.‘𝐾)) |
90 | 20, 87, 6, 61 | 2llnmat 37100 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∨ (𝑅‘𝐹)) ∈ (LLines‘𝐾) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (LLines‘𝐾)) ∧ ((𝑄 ∨ (𝑅‘𝐹)) ≠ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ≠ (0.‘𝐾))) → ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ∈ 𝐴) |
91 | 1, 63, 82, 84, 89, 90 | syl32anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ∈ 𝐴) |
92 | 5, 6 | atcmp 36887 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ (𝐹‘𝑄) ∈ 𝐴 ∧ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ∈ 𝐴) → ((𝐹‘𝑄) ≤ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ↔ (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))))) |
93 | 51, 10, 91, 92 | syl3anc 1368 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝐹‘𝑄) ≤ ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ↔ (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))))) |
94 | 49, 93 | mpbid 235 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |