Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc5 Structured version   Visualization version   GIF version

Theorem cdlemc5 40189
Description: Lemma for cdlemc 40191. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l = (le‘𝐾)
cdlemc3.j = (join‘𝐾)
cdlemc3.m = (meet‘𝐾)
cdlemc3.a 𝐴 = (Atoms‘𝐾)
cdlemc3.h 𝐻 = (LHyp‘𝐾)
cdlemc3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemc3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemc5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))

Proof of Theorem cdlemc5
StepHypRef Expression
1 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
2 simp23l 1295 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄𝐴)
3 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
5 cdlemc3.l . . . . . . 7 = (le‘𝐾)
6 cdlemc3.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 cdlemc3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
8 cdlemc3.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 40134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
103, 4, 2, 9syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ∈ 𝐴)
11 cdlemc3.j . . . . . 6 = (join‘𝐾)
125, 11, 6hlatlej2 39369 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → (𝐹𝑄) (𝑄 (𝐹𝑄)))
131, 2, 10, 12syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) (𝑄 (𝐹𝑄)))
14 simp23 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
15 cdlemc3.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
165, 11, 6, 7, 8, 15trljat1 40160 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
173, 4, 14, 16syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
1813, 17breqtrrd 5135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) (𝑄 (𝑅𝐹)))
19 simp22 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 cdlemc3.m . . . . 5 = (meet‘𝐾)
215, 11, 20, 6, 7, 8cdlemc2 40186 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
223, 4, 19, 14, 21syl112anc 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
231hllatd 39357 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
24 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2524, 6atbase 39282 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
262, 25syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄 ∈ (Base‘𝐾))
2724, 7, 8ltrncl 40119 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄 ∈ (Base‘𝐾)) → (𝐹𝑄) ∈ (Base‘𝐾))
283, 4, 26, 27syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ∈ (Base‘𝐾))
2924, 7, 8, 15trlcl 40158 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
303, 4, 29syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ (Base‘𝐾))
3124, 11latjcl 18398 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
3223, 26, 30, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
33 simp22l 1293 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
3424, 6atbase 39282 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾))
3624, 7, 8ltrncl 40119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
373, 4, 35, 36syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ∈ (Base‘𝐾))
3824, 11, 6hlatjcl 39360 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
391, 33, 2, 38syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑄) ∈ (Base‘𝐾))
40 simp1r 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑊𝐻)
4124, 7lhpbase 39992 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4240, 41syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑊 ∈ (Base‘𝐾))
4324, 20latmcl 18399 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4423, 39, 42, 43syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4524, 11latjcl 18398 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
4623, 37, 44, 45syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
4724, 5, 20latlem12 18425 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐹𝑄) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))) → (((𝐹𝑄) (𝑄 (𝑅𝐹)) ∧ (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
4823, 28, 32, 46, 47syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (((𝐹𝑄) (𝑄 (𝑅𝐹)) ∧ (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
4918, 22, 48mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
50 hlatl 39353 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
511, 50syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ AtLat)
52 simp3r 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
535, 6, 7, 8, 15trlat 40163 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
543, 19, 4, 52, 53syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
555, 7, 8, 15trlle 40178 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
563, 4, 55syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
57 simp23r 1296 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 𝑊)
58 nbrne2 5127 . . . . . . 7 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → (𝑅𝐹) ≠ 𝑄)
5958necomd 2980 . . . . . 6 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → 𝑄 ≠ (𝑅𝐹))
6056, 57, 59syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄 ≠ (𝑅𝐹))
61 eqid 2729 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
6211, 6, 61llni2 39506 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴) ∧ 𝑄 ≠ (𝑅𝐹)) → (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾))
631, 2, 54, 60, 62syl31anc 1375 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾))
645, 6, 7, 8ltrnat 40134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
653, 4, 33, 64syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ∈ 𝐴)
665, 11, 6hlatlej1 39368 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
671, 33, 65, 66syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 (𝑃 (𝐹𝑃)))
68 simp3l 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 (𝑃 (𝐹𝑃)))
69 nbrne2 5127 . . . . . . 7 ((𝑃 (𝑃 (𝐹𝑃)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → 𝑃𝑄)
7067, 68, 69syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝑄)
715, 11, 20, 6, 7lhpat 40037 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
723, 19, 2, 70, 71syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
7324, 5, 20latmle2 18424 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
7423, 39, 42, 73syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) 𝑊)
755, 6, 7, 8ltrnel 40133 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
7675simprd 495 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝐹𝑃) 𝑊)
773, 4, 19, 76syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝐹𝑃) 𝑊)
78 nbrne2 5127 . . . . . . 7 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → ((𝑃 𝑄) 𝑊) ≠ (𝐹𝑃))
7978necomd 2980 . . . . . 6 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊))
8074, 77, 79syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊))
8111, 6, 61llni2 39506 . . . . 5 (((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) ∧ (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾))
821, 65, 72, 80, 81syl31anc 1375 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾))
835, 11, 20, 6, 7, 8, 15cdlemc4 40188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
84833adant3r 1182 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
8524, 20latmcl 18399 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾))
8623, 32, 46, 85syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾))
87 eqid 2729 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
8824, 5, 87, 6atlen0 39303 . . . . 5 (((𝐾 ∈ AtLat ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾) ∧ (𝐹𝑄) ∈ 𝐴) ∧ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))
8951, 86, 10, 49, 88syl31anc 1375 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))
9020, 87, 6, 612llnmat 39518 . . . 4 (((𝐾 ∈ HL ∧ (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾)) ∧ ((𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴)
911, 63, 82, 84, 89, 90syl32anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴)
925, 6atcmp 39304 . . 3 ((𝐾 ∈ AtLat ∧ (𝐹𝑄) ∈ 𝐴 ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴) → ((𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
9351, 10, 91, 92syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
9449, 93mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  0.cp0 18382  Latclat 18390  Atomscatm 39256  AtLatcal 39257  HLchlt 39343  LLinesclln 39485  LHypclh 39978  LTrncltrn 40095  trLctrl 40152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  cdlemc  40191
  Copyright terms: Public domain W3C validator