Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc5 Structured version   Visualization version   GIF version

Theorem cdlemc5 40178
Description: Lemma for cdlemc 40180. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l = (le‘𝐾)
cdlemc3.j = (join‘𝐾)
cdlemc3.m = (meet‘𝐾)
cdlemc3.a 𝐴 = (Atoms‘𝐾)
cdlemc3.h 𝐻 = (LHyp‘𝐾)
cdlemc3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemc3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemc5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))

Proof of Theorem cdlemc5
StepHypRef Expression
1 simp1l 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
2 simp23l 1293 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄𝐴)
3 simp1 1135 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp21 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
5 cdlemc3.l . . . . . . 7 = (le‘𝐾)
6 cdlemc3.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 cdlemc3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
8 cdlemc3.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 40123 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
103, 4, 2, 9syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ∈ 𝐴)
11 cdlemc3.j . . . . . 6 = (join‘𝐾)
125, 11, 6hlatlej2 39358 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → (𝐹𝑄) (𝑄 (𝐹𝑄)))
131, 2, 10, 12syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) (𝑄 (𝐹𝑄)))
14 simp23 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
15 cdlemc3.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
165, 11, 6, 7, 8, 15trljat1 40149 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
173, 4, 14, 16syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
1813, 17breqtrrd 5176 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) (𝑄 (𝑅𝐹)))
19 simp22 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 cdlemc3.m . . . . 5 = (meet‘𝐾)
215, 11, 20, 6, 7, 8cdlemc2 40175 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
223, 4, 19, 14, 21syl112anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
231hllatd 39346 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
24 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2524, 6atbase 39271 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
262, 25syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄 ∈ (Base‘𝐾))
2724, 7, 8ltrncl 40108 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄 ∈ (Base‘𝐾)) → (𝐹𝑄) ∈ (Base‘𝐾))
283, 4, 26, 27syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ∈ (Base‘𝐾))
2924, 7, 8, 15trlcl 40147 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
303, 4, 29syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ (Base‘𝐾))
3124, 11latjcl 18497 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
3223, 26, 30, 31syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
33 simp22l 1291 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
3424, 6atbase 39271 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾))
3624, 7, 8ltrncl 40108 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
373, 4, 35, 36syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ∈ (Base‘𝐾))
3824, 11, 6hlatjcl 39349 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
391, 33, 2, 38syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑄) ∈ (Base‘𝐾))
40 simp1r 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑊𝐻)
4124, 7lhpbase 39981 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4240, 41syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑊 ∈ (Base‘𝐾))
4324, 20latmcl 18498 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4423, 39, 42, 43syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4524, 11latjcl 18497 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
4623, 37, 44, 45syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
4724, 5, 20latlem12 18524 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐹𝑄) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))) → (((𝐹𝑄) (𝑄 (𝑅𝐹)) ∧ (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
4823, 28, 32, 46, 47syl13anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (((𝐹𝑄) (𝑄 (𝑅𝐹)) ∧ (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
4918, 22, 48mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
50 hlatl 39342 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
511, 50syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ AtLat)
52 simp3r 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
535, 6, 7, 8, 15trlat 40152 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
543, 19, 4, 52, 53syl112anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
555, 7, 8, 15trlle 40167 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
563, 4, 55syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
57 simp23r 1294 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 𝑊)
58 nbrne2 5168 . . . . . . 7 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → (𝑅𝐹) ≠ 𝑄)
5958necomd 2994 . . . . . 6 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → 𝑄 ≠ (𝑅𝐹))
6056, 57, 59syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄 ≠ (𝑅𝐹))
61 eqid 2735 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
6211, 6, 61llni2 39495 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴) ∧ 𝑄 ≠ (𝑅𝐹)) → (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾))
631, 2, 54, 60, 62syl31anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾))
645, 6, 7, 8ltrnat 40123 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
653, 4, 33, 64syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ∈ 𝐴)
665, 11, 6hlatlej1 39357 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
671, 33, 65, 66syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 (𝑃 (𝐹𝑃)))
68 simp3l 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 (𝑃 (𝐹𝑃)))
69 nbrne2 5168 . . . . . . 7 ((𝑃 (𝑃 (𝐹𝑃)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → 𝑃𝑄)
7067, 68, 69syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝑄)
715, 11, 20, 6, 7lhpat 40026 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
723, 19, 2, 70, 71syl112anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
7324, 5, 20latmle2 18523 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
7423, 39, 42, 73syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) 𝑊)
755, 6, 7, 8ltrnel 40122 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
7675simprd 495 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝐹𝑃) 𝑊)
773, 4, 19, 76syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝐹𝑃) 𝑊)
78 nbrne2 5168 . . . . . . 7 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → ((𝑃 𝑄) 𝑊) ≠ (𝐹𝑃))
7978necomd 2994 . . . . . 6 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊))
8074, 77, 79syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊))
8111, 6, 61llni2 39495 . . . . 5 (((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) ∧ (𝐹𝑃) ≠ ((𝑃 𝑄) 𝑊)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾))
821, 65, 72, 80, 81syl31anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾))
835, 11, 20, 6, 7, 8, 15cdlemc4 40177 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
84833adant3r 1180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
8524, 20latmcl 18498 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾))
8623, 32, 46, 85syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾))
87 eqid 2735 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
8824, 5, 87, 6atlen0 39292 . . . . 5 (((𝐾 ∈ AtLat ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ (Base‘𝐾) ∧ (𝐹𝑄) ∈ 𝐴) ∧ (𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))
8951, 86, 10, 49, 88syl31anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))
9020, 87, 6, 612llnmat 39507 . . . 4 (((𝐾 ∈ HL ∧ (𝑄 (𝑅𝐹)) ∈ (LLines‘𝐾) ∧ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∈ (LLines‘𝐾)) ∧ ((𝑄 (𝑅𝐹)) ≠ ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ≠ (0.‘𝐾))) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴)
911, 63, 82, 84, 89, 90syl32anc 1377 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴)
925, 6atcmp 39293 . . 3 ((𝐾 ∈ AtLat ∧ (𝐹𝑄) ∈ 𝐴 ∧ ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ∈ 𝐴) → ((𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
9351, 10, 91, 92syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝐹𝑄) ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) ↔ (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))))
9449, 93mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (¬ 𝑄 (𝑃 (𝐹𝑃)) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  0.cp0 18481  Latclat 18489  Atomscatm 39245  AtLatcal 39246  HLchlt 39332  LLinesclln 39474  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  cdlemc  40180
  Copyright terms: Public domain W3C validator