| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sletr | Structured version Visualization version GIF version | ||
| Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| sletr | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltletr 27675 | . . . . . . 7 ⊢ ((𝐶 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐶 <s 𝐴 ∧ 𝐴 ≤s 𝐵) → 𝐶 <s 𝐵)) | |
| 2 | 1 | 3coml 1127 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 <s 𝐴 ∧ 𝐴 ≤s 𝐵) → 𝐶 <s 𝐵)) |
| 3 | 2 | expcomd 416 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 → (𝐶 <s 𝐴 → 𝐶 <s 𝐵))) |
| 4 | 3 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐴 ≤s 𝐵) → (𝐶 <s 𝐴 → 𝐶 <s 𝐵)) |
| 5 | 4 | con3d 152 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐴 ≤s 𝐵) → (¬ 𝐶 <s 𝐵 → ¬ 𝐶 <s 𝐴)) |
| 6 | 5 | expimpd 453 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → ¬ 𝐶 <s 𝐴)) |
| 7 | slenlt 27671 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵)) | |
| 8 | 7 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵)) |
| 9 | 8 | anbi2d 630 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) ↔ (𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵))) |
| 10 | slenlt 27671 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴)) | |
| 11 | 10 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴)) |
| 12 | 6, 9, 11 | 3imtr4d 294 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 No csur 27558 <s cslt 27559 ≤s csle 27663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-sle 27664 |
| This theorem is referenced by: sletrd 27681 |
| Copyright terms: Public domain | W3C validator |