MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sletr Structured version   Visualization version   GIF version

Theorem sletr 27058
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sletr ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶))

Proof of Theorem sletr
StepHypRef Expression
1 sltletr 27056 . . . . . . 7 ((𝐶 No 𝐴 No 𝐵 No ) → ((𝐶 <s 𝐴𝐴 ≤s 𝐵) → 𝐶 <s 𝐵))
213coml 1127 . . . . . 6 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐶 <s 𝐴𝐴 ≤s 𝐵) → 𝐶 <s 𝐵))
32expcomd 417 . . . . 5 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ≤s 𝐵 → (𝐶 <s 𝐴𝐶 <s 𝐵)))
43imp 407 . . . 4 (((𝐴 No 𝐵 No 𝐶 No ) ∧ 𝐴 ≤s 𝐵) → (𝐶 <s 𝐴𝐶 <s 𝐵))
54con3d 152 . . 3 (((𝐴 No 𝐵 No 𝐶 No ) ∧ 𝐴 ≤s 𝐵) → (¬ 𝐶 <s 𝐵 → ¬ 𝐶 <s 𝐴))
65expimpd 454 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → ¬ 𝐶 <s 𝐴))
7 slenlt 27052 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵))
873adant1 1130 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵))
98anbi2d 629 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐶) ↔ (𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵)))
10 slenlt 27052 . . 3 ((𝐴 No 𝐶 No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴))
11103adant2 1131 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴))
126, 9, 113imtr4d 293 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087  wcel 2106   class class class wbr 5103   No csur 26940   <s cslt 26941   ≤s csle 27044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6318  df-on 6319  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-fv 6501  df-1o 8404  df-2o 8405  df-no 26943  df-slt 26944  df-sle 27045
This theorem is referenced by:  sletrd  27062
  Copyright terms: Public domain W3C validator