| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sletr | Structured version Visualization version GIF version | ||
| Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| sletr | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltletr 27644 | . . . . . . 7 ⊢ ((𝐶 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐶 <s 𝐴 ∧ 𝐴 ≤s 𝐵) → 𝐶 <s 𝐵)) | |
| 2 | 1 | 3coml 1127 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 <s 𝐴 ∧ 𝐴 ≤s 𝐵) → 𝐶 <s 𝐵)) |
| 3 | 2 | expcomd 416 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 → (𝐶 <s 𝐴 → 𝐶 <s 𝐵))) |
| 4 | 3 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐴 ≤s 𝐵) → (𝐶 <s 𝐴 → 𝐶 <s 𝐵)) |
| 5 | 4 | con3d 152 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐴 ≤s 𝐵) → (¬ 𝐶 <s 𝐵 → ¬ 𝐶 <s 𝐴)) |
| 6 | 5 | expimpd 453 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → ¬ 𝐶 <s 𝐴)) |
| 7 | slenlt 27640 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵)) | |
| 8 | 7 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵)) |
| 9 | 8 | anbi2d 630 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) ↔ (𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵))) |
| 10 | slenlt 27640 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴)) | |
| 11 | 10 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴)) |
| 12 | 6, 9, 11 | 3imtr4d 294 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 No csur 27527 <s cslt 27528 ≤s csle 27632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-1o 8411 df-2o 8412 df-no 27530 df-slt 27531 df-sle 27633 |
| This theorem is referenced by: sletrd 27650 |
| Copyright terms: Public domain | W3C validator |