![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sletr | Structured version Visualization version GIF version |
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sletr | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltletr 32470 | . . . . . . 7 ⊢ ((𝐶 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐶 <s 𝐴 ∧ 𝐴 ≤s 𝐵) → 𝐶 <s 𝐵)) | |
2 | 1 | 3coml 1118 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 <s 𝐴 ∧ 𝐴 ≤s 𝐵) → 𝐶 <s 𝐵)) |
3 | 2 | expcomd 408 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 → (𝐶 <s 𝐴 → 𝐶 <s 𝐵))) |
4 | 3 | imp 397 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐴 ≤s 𝐵) → (𝐶 <s 𝐴 → 𝐶 <s 𝐵)) |
5 | 4 | con3d 150 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐴 ≤s 𝐵) → (¬ 𝐶 <s 𝐵 → ¬ 𝐶 <s 𝐴)) |
6 | 5 | expimpd 447 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → ¬ 𝐶 <s 𝐴)) |
7 | slenlt 32466 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵)) | |
8 | 7 | 3adant1 1121 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵)) |
9 | 8 | anbi2d 622 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) ↔ (𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵))) |
10 | slenlt 32466 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴)) | |
11 | 10 | 3adant2 1122 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴)) |
12 | 6, 9, 11 | 3imtr4d 286 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2106 class class class wbr 4886 No csur 32382 <s cslt 32383 ≤s csle 32458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-1o 7843 df-2o 7844 df-no 32385 df-slt 32386 df-sle 32459 |
This theorem is referenced by: sletrd 32476 |
Copyright terms: Public domain | W3C validator |