MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sletr Structured version   Visualization version   GIF version

Theorem sletr 27604
Description: Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sletr ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶))

Proof of Theorem sletr
StepHypRef Expression
1 sltletr 27602 . . . . . . 7 ((𝐶 No 𝐴 No 𝐵 No ) → ((𝐶 <s 𝐴𝐴 ≤s 𝐵) → 𝐶 <s 𝐵))
213coml 1126 . . . . . 6 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐶 <s 𝐴𝐴 ≤s 𝐵) → 𝐶 <s 𝐵))
32expcomd 416 . . . . 5 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ≤s 𝐵 → (𝐶 <s 𝐴𝐶 <s 𝐵)))
43imp 406 . . . 4 (((𝐴 No 𝐵 No 𝐶 No ) ∧ 𝐴 ≤s 𝐵) → (𝐶 <s 𝐴𝐶 <s 𝐵))
54con3d 152 . . 3 (((𝐴 No 𝐵 No 𝐶 No ) ∧ 𝐴 ≤s 𝐵) → (¬ 𝐶 <s 𝐵 → ¬ 𝐶 <s 𝐴))
65expimpd 453 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵) → ¬ 𝐶 <s 𝐴))
7 slenlt 27598 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵))
873adant1 1129 . . 3 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐵 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐵))
98anbi2d 628 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐶) ↔ (𝐴 ≤s 𝐵 ∧ ¬ 𝐶 <s 𝐵)))
10 slenlt 27598 . . 3 ((𝐴 No 𝐶 No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴))
11103adant2 1130 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ≤s 𝐶 ↔ ¬ 𝐶 <s 𝐴))
126, 9, 113imtr4d 294 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086  wcel 2105   class class class wbr 5148   No csur 27486   <s cslt 27487   ≤s csle 27590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-1o 8472  df-2o 8473  df-no 27489  df-slt 27490  df-sle 27591
This theorem is referenced by:  sletrd  27608
  Copyright terms: Public domain W3C validator