MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sletri3 Structured version   Visualization version   GIF version

Theorem sletri3 27724
Description: Trichotomy law for surreal less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sletri3 ((𝐴 No 𝐵 No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵𝐵 ≤s 𝐴)))

Proof of Theorem sletri3
StepHypRef Expression
1 slttrieq2 27719 . 2 ((𝐴 No 𝐵 No ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴)))
2 slenlt 27721 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
3 slenlt 27721 . . . . 5 ((𝐵 No 𝐴 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
43ancoms 458 . . . 4 ((𝐴 No 𝐵 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
52, 4anbi12d 632 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐴) ↔ (¬ 𝐵 <s 𝐴 ∧ ¬ 𝐴 <s 𝐵)))
6 ancom 460 . . 3 ((¬ 𝐵 <s 𝐴 ∧ ¬ 𝐴 <s 𝐵) ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))
75, 6bitrdi 287 . 2 ((𝐴 No 𝐵 No ) → ((𝐴 ≤s 𝐵𝐵 ≤s 𝐴) ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴)))
81, 7bitr4d 282 1 ((𝐴 No 𝐵 No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵𝐵 ≤s 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124   No csur 27608   <s cslt 27609   ≤s csle 27713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-sle 27714
This theorem is referenced by:  addscan2  27957  mulscan2dlem  28138  n0subs  28310  twocut  28366
  Copyright terms: Public domain W3C validator