Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sletri3 | Structured version Visualization version GIF version |
Description: Trichotomy law for surreal less than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sletri3 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slttrieq2 33880 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))) | |
2 | slenlt 33882 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
3 | slenlt 33882 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) | |
4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
5 | 2, 4 | anbi12d 630 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴) ↔ (¬ 𝐵 <s 𝐴 ∧ ¬ 𝐴 <s 𝐵))) |
6 | ancom 460 | . . 3 ⊢ ((¬ 𝐵 <s 𝐴 ∧ ¬ 𝐴 <s 𝐵) ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴)) | |
7 | 5, 6 | bitrdi 286 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴) ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))) |
8 | 1, 7 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 No csur 33770 <s cslt 33771 ≤s csle 33874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-sle 33875 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |