| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slemul1d | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| Ref | Expression |
|---|---|
| sltmul12d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| sltmul12d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| sltmul12d.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| sltmul12d.4 | ⊢ (𝜑 → 0s <s 𝐶) |
| Ref | Expression |
|---|---|
| slemul1d | ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltmul12d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | sltmul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | sltmul12d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 4 | sltmul12d.4 | . . . 4 ⊢ (𝜑 → 0s <s 𝐶) | |
| 5 | 1, 2, 3, 4 | sltmul1d 28135 | . . 3 ⊢ (𝜑 → (𝐵 <s 𝐴 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) |
| 6 | 5 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐵 <s 𝐴 ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) |
| 7 | slenlt 27733 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
| 8 | 2, 1, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
| 9 | 2, 3 | mulscld 28097 | . . 3 ⊢ (𝜑 → (𝐴 ·s 𝐶) ∈ No ) |
| 10 | 1, 3 | mulscld 28097 | . . 3 ⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No ) |
| 11 | slenlt 27733 | . . 3 ⊢ (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) | |
| 12 | 9, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) |
| 13 | 6, 8, 12 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 No csur 27620 <s cslt 27621 ≤s csle 27725 0s c0s 27803 ·s cmuls 28068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-nadd 8686 df-no 27623 df-slt 27624 df-bday 27625 df-sle 27726 df-sslt 27762 df-scut 27764 df-0s 27805 df-made 27822 df-old 27823 df-left 27825 df-right 27826 df-norec 27907 df-norec2 27918 df-adds 27929 df-negs 27989 df-subs 27990 df-muls 28069 |
| This theorem is referenced by: mulscan2dlem 28140 slemul1ad 28144 |
| Copyright terms: Public domain | W3C validator |