MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slemul1d Structured version   Visualization version   GIF version

Theorem slemul1d 28227
Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.)
Hypotheses
Ref Expression
sltmul12d.1 (𝜑𝐴 No )
sltmul12d.2 (𝜑𝐵 No )
sltmul12d.3 (𝜑𝐶 No )
sltmul12d.4 (𝜑 → 0s <s 𝐶)
Assertion
Ref Expression
slemul1d (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))

Proof of Theorem slemul1d
StepHypRef Expression
1 sltmul12d.2 . . . 4 (𝜑𝐵 No )
2 sltmul12d.1 . . . 4 (𝜑𝐴 No )
3 sltmul12d.3 . . . 4 (𝜑𝐶 No )
4 sltmul12d.4 . . . 4 (𝜑 → 0s <s 𝐶)
51, 2, 3, 4sltmul1d 28225 . . 3 (𝜑 → (𝐵 <s 𝐴 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶)))
65notbid 318 . 2 (𝜑 → (¬ 𝐵 <s 𝐴 ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶)))
7 slenlt 27823 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
82, 1, 7syl2anc 584 . 2 (𝜑 → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
92, 3mulscld 28187 . . 3 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
101, 3mulscld 28187 . . 3 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
11 slenlt 27823 . . 3 (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶)))
129, 10, 11syl2anc 584 . 2 (𝜑 → ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶)))
136, 8, 123bitr4d 311 1 (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2108   class class class wbr 5151  (class class class)co 7438   No csur 27710   <s cslt 27711   ≤s csle 27815   0s c0s 27893   ·s cmuls 28158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-ot 4643  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-1o 8514  df-2o 8515  df-nadd 8712  df-no 27713  df-slt 27714  df-bday 27715  df-sle 27816  df-sslt 27852  df-scut 27854  df-0s 27895  df-made 27912  df-old 27913  df-left 27915  df-right 27916  df-norec 27997  df-norec2 28008  df-adds 28019  df-negs 28079  df-subs 28080  df-muls 28159
This theorem is referenced by:  mulscan2dlem  28230  slemul1ad  28234
  Copyright terms: Public domain W3C validator