![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slemul1d | Structured version Visualization version GIF version |
Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
Ref | Expression |
---|---|
sltmul12d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltmul12d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
sltmul12d.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
sltmul12d.4 | ⊢ (𝜑 → 0s <s 𝐶) |
Ref | Expression |
---|---|
slemul1d | ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltmul12d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
2 | sltmul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | sltmul12d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
4 | sltmul12d.4 | . . . 4 ⊢ (𝜑 → 0s <s 𝐶) | |
5 | 1, 2, 3, 4 | sltmul1d 28219 | . . 3 ⊢ (𝜑 → (𝐵 <s 𝐴 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) |
6 | 5 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐵 <s 𝐴 ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) |
7 | slenlt 27817 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
8 | 2, 1, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
9 | 2, 3 | mulscld 28181 | . . 3 ⊢ (𝜑 → (𝐴 ·s 𝐶) ∈ No ) |
10 | 1, 3 | mulscld 28181 | . . 3 ⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No ) |
11 | slenlt 27817 | . . 3 ⊢ (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) | |
12 | 9, 10, 11 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) |
13 | 6, 8, 12 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7450 No csur 27704 <s cslt 27705 ≤s csle 27809 0s c0s 27887 ·s cmuls 28152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-1o 8524 df-2o 8525 df-nadd 8724 df-no 27707 df-slt 27708 df-bday 27709 df-sle 27810 df-sslt 27846 df-scut 27848 df-0s 27889 df-made 27906 df-old 27907 df-left 27909 df-right 27910 df-norec 27991 df-norec2 28002 df-adds 28013 df-negs 28073 df-subs 28074 df-muls 28153 |
This theorem is referenced by: mulscan2dlem 28224 slemul1ad 28228 |
Copyright terms: Public domain | W3C validator |