MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slemul1d Structured version   Visualization version   GIF version

Theorem slemul1d 28054
Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.)
Hypotheses
Ref Expression
sltmul12d.1 (𝜑𝐴 No )
sltmul12d.2 (𝜑𝐵 No )
sltmul12d.3 (𝜑𝐶 No )
sltmul12d.4 (𝜑 → 0s <s 𝐶)
Assertion
Ref Expression
slemul1d (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))

Proof of Theorem slemul1d
StepHypRef Expression
1 sltmul12d.2 . . . 4 (𝜑𝐵 No )
2 sltmul12d.1 . . . 4 (𝜑𝐴 No )
3 sltmul12d.3 . . . 4 (𝜑𝐶 No )
4 sltmul12d.4 . . . 4 (𝜑 → 0s <s 𝐶)
51, 2, 3, 4sltmul1d 28052 . . 3 (𝜑 → (𝐵 <s 𝐴 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶)))
65notbid 318 . 2 (𝜑 → (¬ 𝐵 <s 𝐴 ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶)))
7 slenlt 27640 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
82, 1, 7syl2anc 584 . 2 (𝜑 → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
92, 3mulscld 28014 . . 3 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
101, 3mulscld 28014 . . 3 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
11 slenlt 27640 . . 3 (((𝐴 ·s 𝐶) ∈ No ∧ (𝐵 ·s 𝐶) ∈ No ) → ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶)))
129, 10, 11syl2anc 584 . 2 (𝜑 → ((𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶) ↔ ¬ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶)))
136, 8, 123bitr4d 311 1 (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109   class class class wbr 5102  (class class class)co 7369   No csur 27527   <s cslt 27528   ≤s csle 27632   0s c0s 27710   ·s cmuls 27985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27530  df-slt 27531  df-bday 27532  df-sle 27633  df-sslt 27669  df-scut 27671  df-0s 27712  df-made 27731  df-old 27732  df-left 27734  df-right 27735  df-norec 27821  df-norec2 27832  df-adds 27843  df-negs 27903  df-subs 27904  df-muls 27986
This theorem is referenced by:  mulscan2dlem  28057  slemul1ad  28061
  Copyright terms: Public domain W3C validator