![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltled | Structured version Visualization version GIF version |
Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025.) |
Ref | Expression |
---|---|
sltled.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltled.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
sltled.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
Ref | Expression |
---|---|
sltled | ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltled.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | sltled.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
3 | 1, 2 | jca 510 | . . 3 ⊢ (𝜑 → (𝐴 ∈ No ∧ 𝐵 ∈ No )) |
4 | sltled.3 | . . 3 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
5 | sltasym 27727 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴)) | |
6 | 3, 4, 5 | sylc 65 | . 2 ⊢ (𝜑 → ¬ 𝐵 <s 𝐴) |
7 | slenlt 27731 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | |
8 | 1, 2, 7 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
9 | 6, 8 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 class class class wbr 5149 No csur 27618 <s cslt 27619 ≤s csle 27723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-1o 8487 df-2o 8488 df-no 27621 df-slt 27622 df-sle 27724 |
This theorem is referenced by: sltlend 27750 slemuld 28088 mulsge0d 28096 mulsuniflem 28099 sltmul12ad 28133 sltonold 28203 n0sge0 28258 |
Copyright terms: Public domain | W3C validator |