![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltled | Structured version Visualization version GIF version |
Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025.) |
Ref | Expression |
---|---|
sltled.1 | âĒ (ð â ðī â No ) |
sltled.2 | âĒ (ð â ðĩ â No ) |
sltled.3 | âĒ (ð â ðī <s ðĩ) |
Ref | Expression |
---|---|
sltled | âĒ (ð â ðī âĪs ðĩ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltled.1 | . . . 4 âĒ (ð â ðī â No ) | |
2 | sltled.2 | . . . 4 âĒ (ð â ðĩ â No ) | |
3 | 1, 2 | jca 512 | . . 3 âĒ (ð â (ðī â No ⧠ðĩ â No )) |
4 | sltled.3 | . . 3 âĒ (ð â ðī <s ðĩ) | |
5 | sltasym 27240 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ) â (ðī <s ðĩ â ÂŽ ðĩ <s ðī)) | |
6 | 3, 4, 5 | sylc 65 | . 2 âĒ (ð â ÂŽ ðĩ <s ðī) |
7 | slenlt 27244 | . . 3 âĒ ((ðī â No ⧠ðĩ â No ) â (ðī âĪs ðĩ â ÂŽ ðĩ <s ðī)) | |
8 | 1, 2, 7 | syl2anc 584 | . 2 âĒ (ð â (ðī âĪs ðĩ â ÂŽ ðĩ <s ðī)) |
9 | 6, 8 | mpbird 256 | 1 âĒ (ð â ðī âĪs ðĩ) |
Colors of variables: wff setvar class |
Syntax hints: ÂŽ wn 3 â wi 4 â wb 205 ⧠wa 396 â wcel 2106 class class class wbr 5147 No csur 27132 <s cslt 27133 âĪs csle 27236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-1o 8462 df-2o 8463 df-no 27135 df-slt 27136 df-sle 27237 |
This theorem is referenced by: slemuld 27583 mulsuniflem 27593 |
Copyright terms: Public domain | W3C validator |