![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slesubsubbd | Structured version Visualization version GIF version |
Description: Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
Ref | Expression |
---|---|
sltsubsubbd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltsubsubbd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
sltsubsubbd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
sltsubsubbd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
Ref | Expression |
---|---|
slesubsubbd | ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsubsubbd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
2 | sltsubsubbd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | sltsubsubbd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ No ) | |
4 | sltsubsubbd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
5 | 1, 2, 3, 4 | sltsubsub3bd 28133 | . . 3 ⊢ (𝜑 → ((𝐵 -s 𝐷) <s (𝐴 -s 𝐶) ↔ (𝐶 -s 𝐷) <s (𝐴 -s 𝐵))) |
6 | 5 | notbid 318 | . 2 ⊢ (𝜑 → (¬ (𝐵 -s 𝐷) <s (𝐴 -s 𝐶) ↔ ¬ (𝐶 -s 𝐷) <s (𝐴 -s 𝐵))) |
7 | 2, 4 | subscld 28111 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐶) ∈ No ) |
8 | 1, 3 | subscld 28111 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐷) ∈ No ) |
9 | slenlt 27815 | . . 3 ⊢ (((𝐴 -s 𝐶) ∈ No ∧ (𝐵 -s 𝐷) ∈ No ) → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ ¬ (𝐵 -s 𝐷) <s (𝐴 -s 𝐶))) | |
10 | 7, 8, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ ¬ (𝐵 -s 𝐷) <s (𝐴 -s 𝐶))) |
11 | 2, 1 | subscld 28111 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
12 | 4, 3 | subscld 28111 | . . 3 ⊢ (𝜑 → (𝐶 -s 𝐷) ∈ No ) |
13 | slenlt 27815 | . . 3 ⊢ (((𝐴 -s 𝐵) ∈ No ∧ (𝐶 -s 𝐷) ∈ No ) → ((𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷) ↔ ¬ (𝐶 -s 𝐷) <s (𝐴 -s 𝐵))) | |
14 | 11, 12, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷) ↔ ¬ (𝐶 -s 𝐷) <s (𝐴 -s 𝐵))) |
15 | 6, 10, 14 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 No csur 27702 <s cslt 27703 ≤s csle 27807 -s csubs 28070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-norec2 28000 df-adds 28011 df-negs 28071 df-subs 28072 |
This theorem is referenced by: mulsuniflem 28193 |
Copyright terms: Public domain | W3C validator |