Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slerflex Structured version   Visualization version   GIF version

Theorem slerflex 33737
Description: Surreal less than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
slerflex (𝐴 No 𝐴 ≤s 𝐴)

Proof of Theorem slerflex
StepHypRef Expression
1 sltirr 33720 . 2 (𝐴 No → ¬ 𝐴 <s 𝐴)
2 slenlt 33726 . . 3 ((𝐴 No 𝐴 No ) → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴))
32anidms 570 . 2 (𝐴 No → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴))
41, 3mpbird 260 1 (𝐴 No 𝐴 ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wcel 2112   class class class wbr 5070   No csur 33614   <s cslt 33615   ≤s csle 33718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pr 5339  ax-un 7545
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-ord 6237  df-on 6238  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-fv 6409  df-1o 8226  df-2o 8227  df-no 33617  df-slt 33618  df-sle 33719
This theorem is referenced by:  0slt1s  33794  cofcutrtime  33864
  Copyright terms: Public domain W3C validator