MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slerflex Structured version   Visualization version   GIF version

Theorem slerflex 27651
Description: Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
slerflex (𝐴 No 𝐴 ≤s 𝐴)

Proof of Theorem slerflex
StepHypRef Expression
1 sltirr 27634 . 2 (𝐴 No → ¬ 𝐴 <s 𝐴)
2 slenlt 27640 . . 3 ((𝐴 No 𝐴 No ) → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴))
32anidms 566 . 2 (𝐴 No → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴))
41, 3mpbird 257 1 (𝐴 No 𝐴 ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2098   class class class wbr 5141   No csur 27528   <s cslt 27529   ≤s csle 27632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fv 6545  df-1o 8467  df-2o 8468  df-no 27531  df-slt 27532  df-sle 27633
This theorem is referenced by:  maxs1  27653  maxs2  27654  mins1  27655  mins2  27656  0slt1s  27717  cofcutrtime  27802  cofss  27805  coiniss  27806  cutlt  27807  slemuld  27993  mulsge0d  28001  slemul1ad  28037  abs0s  28091  sleabs  28097  n0sge0  28161
  Copyright terms: Public domain W3C validator