| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slerflex | Structured version Visualization version GIF version | ||
| Description: Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| slerflex | ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltirr 27715 | . 2 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) | |
| 2 | slenlt 27721 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ) → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴)) | |
| 3 | 2 | anidms 566 | . 2 ⊢ (𝐴 ∈ No → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5124 No csur 27608 <s cslt 27609 ≤s csle 27713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-sle 27714 |
| This theorem is referenced by: maxs1 27734 maxs2 27735 mins1 27736 mins2 27737 0slt1s 27798 cofcutrtime 27892 cofss 27895 coiniss 27896 cutlt 27897 cutmax 27899 cutmin 27900 slemuld 28098 mulsge0d 28106 slemul1ad 28142 abs0s 28201 sleabs 28207 onscutlt 28222 n0sge0 28287 n0sfincut 28303 uzsind 28350 zscut 28352 halfcut 28390 addhalfcut 28391 |
| Copyright terms: Public domain | W3C validator |