MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slerflex Structured version   Visualization version   GIF version

Theorem slerflex 27724
Description: Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
slerflex (𝐴 No 𝐴 ≤s 𝐴)

Proof of Theorem slerflex
StepHypRef Expression
1 sltirr 27707 . 2 (𝐴 No → ¬ 𝐴 <s 𝐴)
2 slenlt 27713 . . 3 ((𝐴 No 𝐴 No ) → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴))
32anidms 565 . 2 (𝐴 No → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴))
41, 3mpbird 256 1 (𝐴 No 𝐴 ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2098   class class class wbr 5152   No csur 27601   <s cslt 27602   ≤s csle 27705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-1o 8495  df-2o 8496  df-no 27604  df-slt 27605  df-sle 27706
This theorem is referenced by:  maxs1  27726  maxs2  27727  mins1  27728  mins2  27729  0slt1s  27790  cofcutrtime  27875  cofss  27878  coiniss  27879  cutlt  27880  slemuld  28066  mulsge0d  28074  slemul1ad  28110  abs0s  28164  sleabs  28170  n0sge0  28234
  Copyright terms: Public domain W3C validator