| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slerflex | Structured version Visualization version GIF version | ||
| Description: Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| slerflex | ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltirr 27686 | . 2 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) | |
| 2 | slenlt 27692 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ) → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴)) | |
| 3 | 2 | anidms 566 | . 2 ⊢ (𝐴 ∈ No → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2113 class class class wbr 5093 No csur 27579 <s cslt 27580 ≤s csle 27684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-1o 8391 df-2o 8392 df-no 27582 df-slt 27583 df-sle 27685 |
| This theorem is referenced by: maxs1 27705 maxs2 27706 mins1 27707 mins2 27708 0slt1s 27774 cofcutrtime 27872 cofss 27875 coiniss 27876 cutlt 27877 cutmax 27879 cutmin 27880 slemuld 28078 mulsge0d 28086 slemul1ad 28122 abs0s 28181 sleabs 28187 onscutlt 28202 n0sge0 28267 n0sfincut 28283 uzsind 28330 zscut 28332 zsoring 28333 halfcut 28379 addhalfcut 28380 |
| Copyright terms: Public domain | W3C validator |