| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slerflex | Structured version Visualization version GIF version | ||
| Description: Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| slerflex | ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltirr 27683 | . 2 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) | |
| 2 | slenlt 27689 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ) → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴)) | |
| 3 | 2 | anidms 566 | . 2 ⊢ (𝐴 ∈ No → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5091 No csur 27576 <s cslt 27577 ≤s csle 27681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-1o 8385 df-2o 8386 df-no 27579 df-slt 27580 df-sle 27682 |
| This theorem is referenced by: maxs1 27702 maxs2 27703 mins1 27704 mins2 27705 0slt1s 27771 cofcutrtime 27869 cofss 27872 coiniss 27873 cutlt 27874 cutmax 27876 cutmin 27877 slemuld 28075 mulsge0d 28083 slemul1ad 28119 abs0s 28178 sleabs 28184 onscutlt 28199 n0sge0 28264 n0sfincut 28280 uzsind 28327 zscut 28329 zsoring 28330 halfcut 28376 addhalfcut 28377 |
| Copyright terms: Public domain | W3C validator |