| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slerflex | Structured version Visualization version GIF version | ||
| Description: Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| slerflex | ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltirr 27658 | . 2 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) | |
| 2 | slenlt 27664 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ) → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴)) | |
| 3 | 2 | anidms 566 | . 2 ⊢ (𝐴 ∈ No → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5107 No csur 27551 <s cslt 27552 ≤s csle 27656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-sle 27657 |
| This theorem is referenced by: maxs1 27677 maxs2 27678 mins1 27679 mins2 27680 0slt1s 27741 cofcutrtime 27835 cofss 27838 coiniss 27839 cutlt 27840 cutmax 27842 cutmin 27843 slemuld 28041 mulsge0d 28049 slemul1ad 28085 abs0s 28144 sleabs 28150 onscutlt 28165 n0sge0 28230 n0sfincut 28246 uzsind 28293 zscut 28295 halfcut 28333 addhalfcut 28334 |
| Copyright terms: Public domain | W3C validator |