MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slerflex Structured version   Visualization version   GIF version

Theorem slerflex 27682
Description: Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
slerflex (𝐴 No 𝐴 ≤s 𝐴)

Proof of Theorem slerflex
StepHypRef Expression
1 sltirr 27665 . 2 (𝐴 No → ¬ 𝐴 <s 𝐴)
2 slenlt 27671 . . 3 ((𝐴 No 𝐴 No ) → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴))
32anidms 566 . 2 (𝐴 No → (𝐴 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐴))
41, 3mpbird 257 1 (𝐴 No 𝐴 ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109   class class class wbr 5110   No csur 27558   <s cslt 27559   ≤s csle 27663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-sle 27664
This theorem is referenced by:  maxs1  27684  maxs2  27685  mins1  27686  mins2  27687  0slt1s  27748  cofcutrtime  27842  cofss  27845  coiniss  27846  cutlt  27847  cutmax  27849  cutmin  27850  slemuld  28048  mulsge0d  28056  slemul1ad  28092  abs0s  28151  sleabs  28157  onscutlt  28172  n0sge0  28237  n0sfincut  28253  uzsind  28300  zscut  28302  halfcut  28340  addhalfcut  28341
  Copyright terms: Public domain W3C validator