Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vs | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 28945 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmd0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmd0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
slmd0vs.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vs | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ SLMod) | |
2 | slmd0vs.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | slmd0vs.o | . . . . . 6 ⊢ 𝑂 = (0g‘𝐹) | |
5 | 2, 3, 4 | slmd0cl 31048 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 𝑂 ∈ (Base‘𝐹)) |
6 | 5 | adantr 484 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
7 | simpr 488 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | slmd0vs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
9 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | slmd0vs.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
11 | slmd0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
12 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
13 | eqid 2738 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
14 | eqid 2738 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
15 | 8, 9, 10, 11, 2, 3, 12, 13, 14, 4 | slmdlema 31033 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
16 | 1, 6, 6, 7, 7, 15 | syl122anc 1380 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
17 | 16 | simprd 499 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )) |
18 | 17 | simp3d 1145 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 +gcplusg 16668 .rcmulr 16669 Scalarcsca 16671 ·𝑠 cvsca 16672 0gc0g 16816 1rcur 19370 SLModcslmd 31030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 df-riota 7127 df-ov 7173 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-cmn 19026 df-srg 19375 df-slmd 31031 |
This theorem is referenced by: slmdvs0 31055 gsumvsca2 31057 |
Copyright terms: Public domain | W3C validator |