![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vs | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 31044 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmd0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmd0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
slmd0vs.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vs | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ SLMod) | |
2 | slmd0vs.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | slmd0vs.o | . . . . . 6 ⊢ 𝑂 = (0g‘𝐹) | |
5 | 2, 3, 4 | slmd0cl 33199 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 𝑂 ∈ (Base‘𝐹)) |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
7 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | slmd0vs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
9 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | slmd0vs.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
11 | slmd0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
12 | eqid 2740 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
13 | eqid 2740 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
14 | eqid 2740 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
15 | 8, 9, 10, 11, 2, 3, 12, 13, 14, 4 | slmdlema 33184 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
16 | 1, 6, 6, 7, 7, 15 | syl122anc 1379 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
17 | 16 | simprd 495 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )) |
18 | 17 | simp3d 1144 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 +gcplusg 17313 .rcmulr 17314 Scalarcsca 17316 ·𝑠 cvsca 17317 0gc0g 17501 1rcur 20210 SLModcslmd 33181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-riota 7406 df-ov 7453 df-0g 17503 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-cmn 19826 df-srg 20216 df-slmd 33182 |
This theorem is referenced by: slmdvs0 33206 gsumvsca2 33208 |
Copyright terms: Public domain | W3C validator |