![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vs | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30530 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vs.v | β’ π = (Baseβπ) |
slmd0vs.f | β’ πΉ = (Scalarβπ) |
slmd0vs.s | β’ Β· = ( Β·π βπ) |
slmd0vs.o | β’ π = (0gβπΉ) |
slmd0vs.z | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
slmd0vs | β’ ((π β SLMod β§ π β π) β (π Β· π) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 β’ ((π β SLMod β§ π β π) β π β SLMod) | |
2 | slmd0vs.f | . . . . . 6 β’ πΉ = (Scalarβπ) | |
3 | eqid 2730 | . . . . . 6 β’ (BaseβπΉ) = (BaseβπΉ) | |
4 | slmd0vs.o | . . . . . 6 β’ π = (0gβπΉ) | |
5 | 2, 3, 4 | slmd0cl 32633 | . . . . 5 β’ (π β SLMod β π β (BaseβπΉ)) |
6 | 5 | adantr 479 | . . . 4 β’ ((π β SLMod β§ π β π) β π β (BaseβπΉ)) |
7 | simpr 483 | . . . 4 β’ ((π β SLMod β§ π β π) β π β π) | |
8 | slmd0vs.v | . . . . 5 β’ π = (Baseβπ) | |
9 | eqid 2730 | . . . . 5 β’ (+gβπ) = (+gβπ) | |
10 | slmd0vs.s | . . . . 5 β’ Β· = ( Β·π βπ) | |
11 | slmd0vs.z | . . . . 5 β’ 0 = (0gβπ) | |
12 | eqid 2730 | . . . . 5 β’ (+gβπΉ) = (+gβπΉ) | |
13 | eqid 2730 | . . . . 5 β’ (.rβπΉ) = (.rβπΉ) | |
14 | eqid 2730 | . . . . 5 β’ (1rβπΉ) = (1rβπΉ) | |
15 | 8, 9, 10, 11, 2, 3, 12, 13, 14, 4 | slmdlema 32618 | . . . 4 β’ ((π β SLMod β§ (π β (BaseβπΉ) β§ π β (BaseβπΉ)) β§ (π β π β§ π β π)) β (((π Β· π) β π β§ (π Β· (π(+gβπ)π)) = ((π Β· π)(+gβπ)(π Β· π)) β§ ((π(+gβπΉ)π) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) β§ (((π(.rβπΉ)π) Β· π) = (π Β· (π Β· π)) β§ ((1rβπΉ) Β· π) = π β§ (π Β· π) = 0 ))) |
16 | 1, 6, 6, 7, 7, 15 | syl122anc 1377 | . . 3 β’ ((π β SLMod β§ π β π) β (((π Β· π) β π β§ (π Β· (π(+gβπ)π)) = ((π Β· π)(+gβπ)(π Β· π)) β§ ((π(+gβπΉ)π) Β· π) = ((π Β· π)(+gβπ)(π Β· π))) β§ (((π(.rβπΉ)π) Β· π) = (π Β· (π Β· π)) β§ ((1rβπΉ) Β· π) = π β§ (π Β· π) = 0 ))) |
17 | 16 | simprd 494 | . 2 β’ ((π β SLMod β§ π β π) β (((π(.rβπΉ)π) Β· π) = (π Β· (π Β· π)) β§ ((1rβπΉ) Β· π) = π β§ (π Β· π) = 0 )) |
18 | 17 | simp3d 1142 | 1 β’ ((π β SLMod β§ π β π) β (π Β· π) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 0gc0g 17389 1rcur 20075 SLModcslmd 32615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-riota 7367 df-ov 7414 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-cmn 19691 df-srg 20081 df-slmd 32616 |
This theorem is referenced by: slmdvs0 32640 gsumvsca2 32642 |
Copyright terms: Public domain | W3C validator |