Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vs Structured version   Visualization version   GIF version

Theorem slmd0vs 32944
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30833 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vs.v 𝑉 = (Base‘𝑊)
slmd0vs.f 𝐹 = (Scalar‘𝑊)
slmd0vs.s · = ( ·𝑠𝑊)
slmd0vs.o 𝑂 = (0g𝐹)
slmd0vs.z 0 = (0g𝑊)
Assertion
Ref Expression
slmd0vs ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )

Proof of Theorem slmd0vs
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑊 ∈ SLMod)
2 slmd0vs.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 eqid 2728 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
4 slmd0vs.o . . . . . 6 𝑂 = (0g𝐹)
52, 3, 4slmd0cl 32938 . . . . 5 (𝑊 ∈ SLMod → 𝑂 ∈ (Base‘𝐹))
65adantr 480 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑂 ∈ (Base‘𝐹))
7 simpr 484 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑋𝑉)
8 slmd0vs.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2728 . . . . 5 (+g𝑊) = (+g𝑊)
10 slmd0vs.s . . . . 5 · = ( ·𝑠𝑊)
11 slmd0vs.z . . . . 5 0 = (0g𝑊)
12 eqid 2728 . . . . 5 (+g𝐹) = (+g𝐹)
13 eqid 2728 . . . . 5 (.r𝐹) = (.r𝐹)
14 eqid 2728 . . . . 5 (1r𝐹) = (1r𝐹)
158, 9, 10, 11, 2, 3, 12, 13, 14, 4slmdlema 32923 . . . 4 ((𝑊 ∈ SLMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g𝑊)𝑋)) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )))
161, 6, 6, 7, 7, 15syl122anc 1377 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g𝑊)𝑋)) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )))
1716simprd 495 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))
1817simp3d 1142 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  .rcmulr 17234  Scalarcsca 17236   ·𝑠 cvsca 17237  0gc0g 17421  1rcur 20121  SLModcslmd 32920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-riota 7376  df-ov 7423  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-cmn 19737  df-srg 20127  df-slmd 32921
This theorem is referenced by:  slmdvs0  32945  gsumvsca2  32947
  Copyright terms: Public domain W3C validator