Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vs | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 29372 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmd0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmd0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
slmd0vs.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vs | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ SLMod) | |
2 | slmd0vs.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | slmd0vs.o | . . . . . 6 ⊢ 𝑂 = (0g‘𝐹) | |
5 | 2, 3, 4 | slmd0cl 31471 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 𝑂 ∈ (Base‘𝐹)) |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
7 | simpr 485 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | slmd0vs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
9 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | slmd0vs.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
11 | slmd0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
12 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
13 | eqid 2738 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
14 | eqid 2738 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
15 | 8, 9, 10, 11, 2, 3, 12, 13, 14, 4 | slmdlema 31456 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
16 | 1, 6, 6, 7, 7, 15 | syl122anc 1378 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
17 | 16 | simprd 496 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )) |
18 | 17 | simp3d 1143 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 1rcur 19737 SLModcslmd 31453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-cmn 19388 df-srg 19742 df-slmd 31454 |
This theorem is referenced by: slmdvs0 31478 gsumvsca2 31480 |
Copyright terms: Public domain | W3C validator |