| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vs | Structured version Visualization version GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30945 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmd0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
| slmd0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| slmd0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| slmd0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
| slmd0vs.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| slmd0vs | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ SLMod) | |
| 2 | slmd0vs.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 4 | slmd0vs.o | . . . . . 6 ⊢ 𝑂 = (0g‘𝐹) | |
| 5 | 2, 3, 4 | slmd0cl 33177 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 𝑂 ∈ (Base‘𝐹)) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 8 | slmd0vs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 10 | slmd0vs.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 11 | slmd0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 12 | eqid 2730 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 13 | eqid 2730 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 14 | eqid 2730 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 15 | 8, 9, 10, 11, 2, 3, 12, 13, 14, 4 | slmdlema 33162 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
| 16 | 1, 6, 6, 7, 7, 15 | syl122anc 1381 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
| 17 | 16 | simprd 495 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )) |
| 18 | 17 | simp3d 1144 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 .rcmulr 17227 Scalarcsca 17229 ·𝑠 cvsca 17230 0gc0g 17408 1rcur 20096 SLModcslmd 33159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-riota 7346 df-ov 7392 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-cmn 19718 df-srg 20102 df-slmd 33160 |
| This theorem is referenced by: slmdvs0 33184 gsumvsca2 33186 |
| Copyright terms: Public domain | W3C validator |