Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vs Structured version   Visualization version   GIF version

Theorem slmd0vs 33193
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30989 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vs.v 𝑉 = (Base‘𝑊)
slmd0vs.f 𝐹 = (Scalar‘𝑊)
slmd0vs.s · = ( ·𝑠𝑊)
slmd0vs.o 𝑂 = (0g𝐹)
slmd0vs.z 0 = (0g𝑊)
Assertion
Ref Expression
slmd0vs ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )

Proof of Theorem slmd0vs
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑊 ∈ SLMod)
2 slmd0vs.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 eqid 2729 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
4 slmd0vs.o . . . . . 6 𝑂 = (0g𝐹)
52, 3, 4slmd0cl 33187 . . . . 5 (𝑊 ∈ SLMod → 𝑂 ∈ (Base‘𝐹))
65adantr 480 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑂 ∈ (Base‘𝐹))
7 simpr 484 . . . 4 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑋𝑉)
8 slmd0vs.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2729 . . . . 5 (+g𝑊) = (+g𝑊)
10 slmd0vs.s . . . . 5 · = ( ·𝑠𝑊)
11 slmd0vs.z . . . . 5 0 = (0g𝑊)
12 eqid 2729 . . . . 5 (+g𝐹) = (+g𝐹)
13 eqid 2729 . . . . 5 (.r𝐹) = (.r𝐹)
14 eqid 2729 . . . . 5 (1r𝐹) = (1r𝐹)
158, 9, 10, 11, 2, 3, 12, 13, 14, 4slmdlema 33172 . . . 4 ((𝑊 ∈ SLMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g𝑊)𝑋)) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )))
161, 6, 6, 7, 7, 15syl122anc 1381 . . 3 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g𝑊)𝑋)) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )))
1716simprd 495 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (((𝑂(.r𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))
1817simp3d 1144 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  1rcur 20101  SLModcslmd 33169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-riota 7326  df-ov 7372  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-cmn 19696  df-srg 20107  df-slmd 33170
This theorem is referenced by:  slmdvs0  33194  gsumvsca2  33196
  Copyright terms: Public domain W3C validator