| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vs | Structured version Visualization version GIF version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30957 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmd0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
| slmd0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| slmd0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| slmd0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
| slmd0vs.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| slmd0vs | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ SLMod) | |
| 2 | slmd0vs.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 4 | slmd0vs.o | . . . . . 6 ⊢ 𝑂 = (0g‘𝐹) | |
| 5 | 2, 3, 4 | slmd0cl 33163 | . . . . 5 ⊢ (𝑊 ∈ SLMod → 𝑂 ∈ (Base‘𝐹)) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 8 | slmd0vs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | eqid 2734 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 10 | slmd0vs.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 11 | slmd0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 12 | eqid 2734 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 13 | eqid 2734 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 14 | eqid 2734 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 15 | 8, 9, 10, 11, 2, 3, 12, 13, 14, 4 | slmdlema 33148 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
| 16 | 1, 6, 6, 7, 7, 15 | syl122anc 1380 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋) ∈ 𝑉 ∧ (𝑂 · (𝑋(+g‘𝑊)𝑋)) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) ∧ ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) ∧ (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 ))) |
| 17 | 16 | simprd 495 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (((𝑂(.r‘𝐹)𝑂) · 𝑋) = (𝑂 · (𝑂 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ (𝑂 · 𝑋) = 0 )) |
| 18 | 17 | simp3d 1144 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 .rcmulr 17274 Scalarcsca 17276 ·𝑠 cvsca 17277 0gc0g 17455 1rcur 20146 SLModcslmd 33145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-riota 7370 df-ov 7416 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-cmn 19768 df-srg 20152 df-slmd 33146 |
| This theorem is referenced by: slmdvs0 33170 gsumvsca2 33172 |
| Copyright terms: Public domain | W3C validator |