MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1ne0sr Structured version   Visualization version   GIF version

Theorem 1ne0sr 11120
Description: 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1ne0sr ¬ 1R = 0R

Proof of Theorem 1ne0sr
StepHypRef Expression
1 ltsosr 11118 . . 3 <R Or R
2 1sr 11105 . . 3 1RR
3 sonr 5613 . . 3 (( <R Or R ∧ 1RR) → ¬ 1R <R 1R)
41, 2, 3mp2an 691 . 2 ¬ 1R <R 1R
5 0lt1sr 11119 . . 3 0R <R 1R
6 breq1 5151 . . 3 (1R = 0R → (1R <R 1R ↔ 0R <R 1R))
75, 6mpbiri 258 . 2 (1R = 0R → 1R <R 1R)
84, 7mto 196 1 ¬ 1R = 0R
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099   class class class wbr 5148   Or wor 5589  Rcnr 10889  0Rc0r 10890  1Rc1r 10891   <R cltr 10895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492  df-er 8725  df-ec 8727  df-qs 8731  df-ni 10896  df-pli 10897  df-mi 10898  df-lti 10899  df-plpq 10932  df-mpq 10933  df-ltpq 10934  df-enq 10935  df-nq 10936  df-erq 10937  df-plq 10938  df-mq 10939  df-1nq 10940  df-rq 10941  df-ltnq 10942  df-np 11005  df-1p 11006  df-plp 11007  df-ltp 11009  df-enr 11079  df-nr 11080  df-ltr 11083  df-0r 11084  df-1r 11085
This theorem is referenced by:  ax1ne0  11184
  Copyright terms: Public domain W3C validator