|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nodenselem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for nodense 27738. 𝐴 and 𝐵 are equal at all elements of the abstraction. (Contributed by Scott Fenton, 17-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| nodenselem7 | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ∈ No ) | |
| 2 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 ∈ No ) | |
| 3 | sltso 27722 | . . . . . . . . 9 ⊢ <s Or No | |
| 4 | sonr 5615 | . . . . . . . . 9 ⊢ (( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴) | |
| 5 | 3, 4 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) | 
| 6 | breq2 5146 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵)) | |
| 7 | 6 | notbid 318 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) | 
| 8 | 5, 7 | syl5ibcom 245 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵)) | 
| 9 | 8 | necon2ad 2954 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 <s 𝐵 → 𝐴 ≠ 𝐵)) | 
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐴 ≠ 𝐵) | 
| 11 | 10 | ad2ant2rl 749 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ≠ 𝐵) | 
| 12 | 1, 2, 11 | 3jca 1128 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵)) | 
| 13 | nosepeq 27731 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝐶) = (𝐵‘𝐶)) | |
| 14 | 12, 13 | sylan 580 | . 2 ⊢ ((((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝐶) = (𝐵‘𝐶)) | 
| 15 | 14 | ex 412 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3435 ∩ cint 4945 class class class wbr 5142 Or wor 5590 Oncon0 6383 ‘cfv 6560 No csur 27685 <s cslt 27686 bday cbday 27687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-1o 8507 df-2o 8508 df-no 27688 df-slt 27689 | 
| This theorem is referenced by: nodense 27738 | 
| Copyright terms: Public domain | W3C validator |