![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nodenselem7 | Structured version Visualization version GIF version |
Description: Lemma for nodense 27192. 𝐴 and 𝐵 are equal at all elements of the abstraction. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
nodenselem7 | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 765 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ∈ No ) | |
2 | simplr 767 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 ∈ No ) | |
3 | sltso 27176 | . . . . . . . . 9 ⊢ <s Or No | |
4 | sonr 5611 | . . . . . . . . 9 ⊢ (( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴) | |
5 | 3, 4 | mpan 688 | . . . . . . . 8 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) |
6 | breq2 5152 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵)) | |
7 | 6 | notbid 317 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
8 | 5, 7 | syl5ibcom 244 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵)) |
9 | 8 | necon2ad 2955 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 <s 𝐵 → 𝐴 ≠ 𝐵)) |
10 | 9 | imp 407 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐴 ≠ 𝐵) |
11 | 10 | ad2ant2rl 747 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ≠ 𝐵) |
12 | 1, 2, 11 | 3jca 1128 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵)) |
13 | nosepeq 27185 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝐶) = (𝐵‘𝐶)) | |
14 | 12, 13 | sylan 580 | . 2 ⊢ ((((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝐶) = (𝐵‘𝐶)) |
15 | 14 | ex 413 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 {crab 3432 ∩ cint 4950 class class class wbr 5148 Or wor 5587 Oncon0 6364 ‘cfv 6543 No csur 27140 <s cslt 27141 bday cbday 27142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1o 8465 df-2o 8466 df-no 27143 df-slt 27144 |
This theorem is referenced by: nodense 27192 |
Copyright terms: Public domain | W3C validator |