![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nodenselem7 | Structured version Visualization version GIF version |
Description: Lemma for nodense 32179. 𝐴 and 𝐵 are equal at all elements of the abstraction. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
nodenselem7 | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 750 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ∈ No ) | |
2 | simplr 752 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 ∈ No ) | |
3 | sltso 32164 | . . . . . . . . 9 ⊢ <s Or No | |
4 | sonr 5192 | . . . . . . . . 9 ⊢ (( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴) | |
5 | 3, 4 | mpan 670 | . . . . . . . 8 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) |
6 | breq2 4791 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵)) | |
7 | 6 | notbid 307 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
8 | 5, 7 | syl5ibcom 235 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵)) |
9 | 8 | necon2ad 2958 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 <s 𝐵 → 𝐴 ≠ 𝐵)) |
10 | 9 | imp 393 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐴 ≠ 𝐵) |
11 | 10 | ad2ant2rl 743 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ≠ 𝐵) |
12 | 1, 2, 11 | 3jca 1122 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵)) |
13 | nosepeq 32172 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝐶) = (𝐵‘𝐶)) | |
14 | 12, 13 | sylan 569 | . 2 ⊢ ((((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝐶) = (𝐵‘𝐶)) |
15 | 14 | ex 397 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 {crab 3065 ∩ cint 4612 class class class wbr 4787 Or wor 5170 Oncon0 5865 ‘cfv 6030 No csur 32130 <s cslt 32131 bday cbday 32132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-ord 5868 df-on 5869 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-1o 7717 df-2o 7718 df-no 32133 df-slt 32134 |
This theorem is referenced by: nodense 32179 |
Copyright terms: Public domain | W3C validator |