| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodenselem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for nodense 27611. 𝐴 and 𝐵 are equal at all elements of the abstraction. (Contributed by Scott Fenton, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodenselem7 | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ∈ No ) | |
| 2 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 ∈ No ) | |
| 3 | sltso 27595 | . . . . . . . . 9 ⊢ <s Or No | |
| 4 | sonr 5573 | . . . . . . . . 9 ⊢ (( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴) | |
| 5 | 3, 4 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) |
| 6 | breq2 5114 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵)) | |
| 7 | 6 | notbid 318 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
| 8 | 5, 7 | syl5ibcom 245 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵)) |
| 9 | 8 | necon2ad 2941 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 <s 𝐵 → 𝐴 ≠ 𝐵)) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐴 ≠ 𝐵) |
| 11 | 10 | ad2ant2rl 749 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ≠ 𝐵) |
| 12 | 1, 2, 11 | 3jca 1128 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵)) |
| 13 | nosepeq 27604 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝐶) = (𝐵‘𝐶)) | |
| 14 | 12, 13 | sylan 580 | . 2 ⊢ ((((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝐶) = (𝐵‘𝐶)) |
| 15 | 14 | ex 412 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 ∩ cint 4913 class class class wbr 5110 Or wor 5548 Oncon0 6335 ‘cfv 6514 No csur 27558 <s cslt 27559 bday cbday 27560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 |
| This theorem is referenced by: nodense 27611 |
| Copyright terms: Public domain | W3C validator |