MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nodenselem7 Structured version   Visualization version   GIF version

Theorem nodenselem7 27753
Description: Lemma for nodense 27755. 𝐴 and 𝐵 are equal at all elements of the abstraction. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
nodenselem7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝐶) = (𝐵𝐶)))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐶,𝑎

Proof of Theorem nodenselem7
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 No )
2 simplr 768 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 No )
3 sltso 27739 . . . . . . . . 9 <s Or No
4 sonr 5632 . . . . . . . . 9 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
53, 4mpan 689 . . . . . . . 8 (𝐴 No → ¬ 𝐴 <s 𝐴)
6 breq2 5170 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
76notbid 318 . . . . . . . 8 (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
85, 7syl5ibcom 245 . . . . . . 7 (𝐴 No → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵))
98necon2ad 2961 . . . . . 6 (𝐴 No → (𝐴 <s 𝐵𝐴𝐵))
109imp 406 . . . . 5 ((𝐴 No 𝐴 <s 𝐵) → 𝐴𝐵)
1110ad2ant2rl 748 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴𝐵)
121, 2, 113jca 1128 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 No 𝐵 No 𝐴𝐵))
13 nosepeq 27748 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴𝐶) = (𝐵𝐶))
1412, 13sylan 579 . 2 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴𝐶) = (𝐵𝐶))
1514ex 412 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝐶) = (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443   cint 4970   class class class wbr 5166   Or wor 5606  Oncon0 6395  cfv 6573   No csur 27702   <s cslt 27703   bday cbday 27704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706
This theorem is referenced by:  nodense  27755
  Copyright terms: Public domain W3C validator