Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nodenselem4 | Structured version Visualization version GIF version |
Description: Lemma for nodense 33822. Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodenselem4 | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 763 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐴 ∈ No ) | |
2 | simplr 765 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐵 ∈ No ) | |
3 | sltso 33806 | . . . . . . 7 ⊢ <s Or No | |
4 | sonr 5517 | . . . . . . 7 ⊢ (( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴) | |
5 | 3, 4 | mpan 686 | . . . . . 6 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ¬ 𝐴 <s 𝐴) |
7 | breq2 5074 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵)) | |
8 | 7 | notbid 317 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
9 | 6, 8 | syl5ibcom 244 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵)) |
10 | 9 | necon2ad 2957 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → 𝐴 ≠ 𝐵)) |
11 | 10 | imp 406 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐴 ≠ 𝐵) |
12 | nosepon 33795 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) | |
13 | 1, 2, 11, 12 | syl3anc 1369 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ∩ cint 4876 class class class wbr 5070 Or wor 5493 Oncon0 6251 ‘cfv 6418 No csur 33770 <s cslt 33771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 |
This theorem is referenced by: nodenselem6 33819 nodense 33822 |
Copyright terms: Public domain | W3C validator |