![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nodenselem4 | Structured version Visualization version GIF version |
Description: Lemma for nodense 27752. Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodenselem4 | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐴 ∈ No ) | |
2 | simplr 769 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐵 ∈ No ) | |
3 | sltso 27736 | . . . . . . 7 ⊢ <s Or No | |
4 | sonr 5621 | . . . . . . 7 ⊢ (( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴) | |
5 | 3, 4 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ¬ 𝐴 <s 𝐴) |
7 | breq2 5152 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵)) | |
8 | 7 | notbid 318 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
9 | 6, 8 | syl5ibcom 245 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵)) |
10 | 9 | necon2ad 2953 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → 𝐴 ≠ 𝐵)) |
11 | 10 | imp 406 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐴 ≠ 𝐵) |
12 | nosepon 27725 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) | |
13 | 1, 2, 11, 12 | syl3anc 1370 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 ∩ cint 4951 class class class wbr 5148 Or wor 5596 Oncon0 6386 ‘cfv 6563 No csur 27699 <s cslt 27700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-1o 8505 df-2o 8506 df-no 27702 df-slt 27703 |
This theorem is referenced by: nodenselem6 27749 nodense 27752 |
Copyright terms: Public domain | W3C validator |