| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodenselem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for nodense 27620. Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodenselem4 | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐴 ∈ No ) | |
| 2 | simplr 768 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐵 ∈ No ) | |
| 3 | sltso 27604 | . . . . . . 7 ⊢ <s Or No | |
| 4 | sonr 5555 | . . . . . . 7 ⊢ (( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴) | |
| 5 | 3, 4 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ¬ 𝐴 <s 𝐴) |
| 7 | breq2 5099 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵)) | |
| 8 | 7 | notbid 318 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
| 9 | 6, 8 | syl5ibcom 245 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵)) |
| 10 | 9 | necon2ad 2940 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → 𝐴 ≠ 𝐵)) |
| 11 | 10 | imp 406 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → 𝐴 ≠ 𝐵) |
| 12 | nosepon 27593 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) | |
| 13 | 1, 2, 11, 12 | syl3anc 1373 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3396 ∩ cint 4899 class class class wbr 5095 Or wor 5530 Oncon0 6311 ‘cfv 6486 No csur 27567 <s cslt 27568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 |
| This theorem is referenced by: nodenselem6 27617 nodense 27620 |
| Copyright terms: Public domain | W3C validator |