MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnr Structured version   Visualization version   GIF version

Theorem ltnr 11217
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
ltnr (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)

Proof of Theorem ltnr
StepHypRef Expression
1 ltso 11202 . 2 < Or ℝ
2 sonr 5553 . 2 (( < Or ℝ ∧ 𝐴 ∈ ℝ) → ¬ 𝐴 < 𝐴)
31, 2mpan 690 1 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2113   class class class wbr 5095   Or wor 5528  cr 11014   < clt 11155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-pre-lttri 11089  ax-pre-lttrn 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-ltxr 11160
This theorem is referenced by:  ltne  11219  ltnri  11231  ltnrd  11256  squeeze0  12034  xrltnr  13022
  Copyright terms: Public domain W3C validator