Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem5 Structured version   Visualization version   GIF version

Theorem nodenselem5 33532
Description: Lemma for nodense 33536. If the birthdays of two distinct surreals are equal, then the ordinal from nodenselem4 33531 is an element of that birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎

Proof of Theorem nodenselem5
StepHypRef Expression
1 simpll 767 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 No )
2 simplr 769 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 No )
3 sltso 33520 . . . . . . . . . 10 <s Or No
4 sonr 5465 . . . . . . . . . 10 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
53, 4mpan 690 . . . . . . . . 9 (𝐴 No → ¬ 𝐴 <s 𝐴)
6 breq2 5034 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
76notbid 321 . . . . . . . . 9 (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
85, 7syl5ibcom 248 . . . . . . . 8 (𝐴 No → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵))
98necon2ad 2949 . . . . . . 7 (𝐴 No → (𝐴 <s 𝐵𝐴𝐵))
109adantr 484 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵𝐴𝐵))
1110imp 410 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → 𝐴𝐵)
1211adantrl 716 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴𝐵)
13 nosepdm 33528 . . . 4 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ (dom 𝐴 ∪ dom 𝐵))
141, 2, 12, 13syl3anc 1372 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ (dom 𝐴 ∪ dom 𝐵))
15 unidm 4042 . . . . 5 (( bday 𝐴) ∪ ( bday 𝐴)) = ( bday 𝐴)
16 simprl 771 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐴) = ( bday 𝐵))
1716uneq2d 4053 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (( bday 𝐴) ∪ ( bday 𝐴)) = (( bday 𝐴) ∪ ( bday 𝐵)))
1815, 17syl5reqr 2788 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (( bday 𝐴) ∪ ( bday 𝐵)) = ( bday 𝐴))
19 bdayval 33492 . . . . . 6 (𝐴 No → ( bday 𝐴) = dom 𝐴)
201, 19syl 17 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐴) = dom 𝐴)
21 bdayval 33492 . . . . . 6 (𝐵 No → ( bday 𝐵) = dom 𝐵)
222, 21syl 17 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐵) = dom 𝐵)
2320, 22uneq12d 4054 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (( bday 𝐴) ∪ ( bday 𝐵)) = (dom 𝐴 ∪ dom 𝐵))
2418, 23, 203eqtr3d 2781 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (dom 𝐴 ∪ dom 𝐵) = dom 𝐴)
2514, 24eleqtrd 2835 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴)
2625, 20eleqtrrd 2836 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2934  {crab 3057  cun 3841   cint 4836   class class class wbr 5030   Or wor 5441  dom cdm 5525  Oncon0 6172  cfv 6339   No csur 33484   <s cslt 33485   bday cbday 33486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-1o 8131  df-2o 8132  df-no 33487  df-slt 33488  df-bday 33489
This theorem is referenced by:  nodenselem8  33535  nodense  33536
  Copyright terms: Public domain W3C validator