Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem5 Structured version   Visualization version   GIF version

Theorem nodenselem5 33077
Description: Lemma for nodense 33081. If the birthdays of two distinct surreals are equal, then the ordinal from nodenselem4 33076 is an element of that birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎

Proof of Theorem nodenselem5
StepHypRef Expression
1 simpll 763 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 No )
2 simplr 765 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 No )
3 sltso 33066 . . . . . . . . . 10 <s Or No
4 sonr 5494 . . . . . . . . . 10 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
53, 4mpan 686 . . . . . . . . 9 (𝐴 No → ¬ 𝐴 <s 𝐴)
6 breq2 5066 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
76notbid 319 . . . . . . . . 9 (𝐴 = 𝐵 → (¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
85, 7syl5ibcom 246 . . . . . . . 8 (𝐴 No → (𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵))
98necon2ad 3035 . . . . . . 7 (𝐴 No → (𝐴 <s 𝐵𝐴𝐵))
109adantr 481 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵𝐴𝐵))
1110imp 407 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → 𝐴𝐵)
1211adantrl 712 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴𝐵)
13 nosepdm 33073 . . . 4 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ (dom 𝐴 ∪ dom 𝐵))
141, 2, 12, 13syl3anc 1365 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ (dom 𝐴 ∪ dom 𝐵))
15 unidm 4131 . . . . 5 (( bday 𝐴) ∪ ( bday 𝐴)) = ( bday 𝐴)
16 simprl 767 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐴) = ( bday 𝐵))
1716uneq2d 4142 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (( bday 𝐴) ∪ ( bday 𝐴)) = (( bday 𝐴) ∪ ( bday 𝐵)))
1815, 17syl5reqr 2875 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (( bday 𝐴) ∪ ( bday 𝐵)) = ( bday 𝐴))
19 bdayval 33040 . . . . . 6 (𝐴 No → ( bday 𝐴) = dom 𝐴)
201, 19syl 17 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐴) = dom 𝐴)
21 bdayval 33040 . . . . . 6 (𝐵 No → ( bday 𝐵) = dom 𝐵)
222, 21syl 17 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐵) = dom 𝐵)
2320, 22uneq12d 4143 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (( bday 𝐴) ∪ ( bday 𝐵)) = (dom 𝐴 ∪ dom 𝐵))
2418, 23, 203eqtr3d 2868 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (dom 𝐴 ∪ dom 𝐵) = dom 𝐴)
2514, 24eleqtrd 2919 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ dom 𝐴)
2625, 20eleqtrrd 2920 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1530  wcel 2106  wne 3020  {crab 3146  cun 3937   cint 4873   class class class wbr 5062   Or wor 5471  dom cdm 5553  Oncon0 6188  cfv 6351   No csur 33032   <s cslt 33033   bday cbday 33034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-ord 6191  df-on 6192  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-fv 6359  df-1o 8096  df-2o 8097  df-no 33035  df-slt 33036  df-bday 33037
This theorem is referenced by:  nodenselem8  33080  nodense  33081
  Copyright terms: Public domain W3C validator