MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  staffn Structured version   Visualization version   GIF version

Theorem staffn 20758
Description: The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
staffval.b 𝐵 = (Base‘𝑅)
staffval.i = (*𝑟𝑅)
staffval.f = (*rf𝑅)
Assertion
Ref Expression
staffn ( Fn 𝐵 = )

Proof of Theorem staffn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 staffval.b . . 3 𝐵 = (Base‘𝑅)
2 staffval.i . . 3 = (*𝑟𝑅)
3 staffval.f . . 3 = (*rf𝑅)
41, 2, 3staffval 20756 . 2 = (𝑥𝐵 ↦ ( 𝑥))
5 dffn5 6880 . . 3 ( Fn 𝐵 = (𝑥𝐵 ↦ ( 𝑥)))
65biimpi 216 . 2 ( Fn 𝐵 = (𝑥𝐵 ↦ ( 𝑥)))
74, 6eqtr4id 2785 1 ( Fn 𝐵 = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cmpt 5170   Fn wfn 6476  cfv 6481  Basecbs 17120  *𝑟cstv 17163  *rfcstf 20752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-staf 20754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator