Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > staffn | Structured version Visualization version GIF version |
Description: The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
staffval.b | ⊢ 𝐵 = (Base‘𝑅) |
staffval.i | ⊢ ∗ = (*𝑟‘𝑅) |
staffval.f | ⊢ ∙ = (*rf‘𝑅) |
Ref | Expression |
---|---|
staffn | ⊢ ( ∗ Fn 𝐵 → ∙ = ∗ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | staffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | staffval.i | . . 3 ⊢ ∗ = (*𝑟‘𝑅) | |
3 | staffval.f | . . 3 ⊢ ∙ = (*rf‘𝑅) | |
4 | 1, 2, 3 | staffval 20022 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥)) |
5 | dffn5 6810 | . . 3 ⊢ ( ∗ Fn 𝐵 ↔ ∗ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥))) | |
6 | 5 | biimpi 215 | . 2 ⊢ ( ∗ Fn 𝐵 → ∗ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥))) |
7 | 4, 6 | eqtr4id 2798 | 1 ⊢ ( ∗ Fn 𝐵 → ∙ = ∗ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ↦ cmpt 5153 Fn wfn 6413 ‘cfv 6418 Basecbs 16840 *𝑟cstv 16890 *rfcstf 20018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-staf 20020 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |