MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  staffn Structured version   Visualization version   GIF version

Theorem staffn 20845
Description: The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
staffval.b 𝐵 = (Base‘𝑅)
staffval.i = (*𝑟𝑅)
staffval.f = (*rf𝑅)
Assertion
Ref Expression
staffn ( Fn 𝐵 = )

Proof of Theorem staffn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 staffval.b . . 3 𝐵 = (Base‘𝑅)
2 staffval.i . . 3 = (*𝑟𝑅)
3 staffval.f . . 3 = (*rf𝑅)
41, 2, 3staffval 20843 . 2 = (𝑥𝐵 ↦ ( 𝑥))
5 dffn5 6966 . . 3 ( Fn 𝐵 = (𝑥𝐵 ↦ ( 𝑥)))
65biimpi 216 . 2 ( Fn 𝐵 = (𝑥𝐵 ↦ ( 𝑥)))
74, 6eqtr4id 2795 1 ( Fn 𝐵 = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cmpt 5224   Fn wfn 6555  cfv 6560  Basecbs 17248  *𝑟cstv 17300  *rfcstf 20839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-staf 20841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator