Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > stafval | Structured version Visualization version GIF version |
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
staffval.b | ⊢ 𝐵 = (Base‘𝑅) |
staffval.i | ⊢ ∗ = (*𝑟‘𝑅) |
staffval.f | ⊢ ∙ = (*rf‘𝑅) |
Ref | Expression |
---|---|
stafval | ⊢ (𝐴 ∈ 𝐵 → ( ∙ ‘𝐴) = ( ∗ ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6771 | . 2 ⊢ (𝑥 = 𝐴 → ( ∗ ‘𝑥) = ( ∗ ‘𝐴)) | |
2 | staffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | staffval.i | . . 3 ⊢ ∗ = (*𝑟‘𝑅) | |
4 | staffval.f | . . 3 ⊢ ∙ = (*rf‘𝑅) | |
5 | 2, 3, 4 | staffval 20105 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥)) |
6 | fvex 6784 | . 2 ⊢ ( ∗ ‘𝐴) ∈ V | |
7 | 1, 5, 6 | fvmpt 6872 | 1 ⊢ (𝐴 ∈ 𝐵 → ( ∙ ‘𝐴) = ( ∗ ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 Basecbs 16910 *𝑟cstv 16962 *rfcstf 20101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-staf 20103 |
This theorem is referenced by: srngcl 20113 srngnvl 20114 srngadd 20115 srngmul 20116 srng1 20117 srng0 20118 issrngd 20119 iporthcom 20838 |
Copyright terms: Public domain | W3C validator |