| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4488 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
| 2 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
| 3 | 2 | fnmpt 6677 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
| 5 | fn0 6668 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∅c0 4308 ↦ cmpt 5201 Fn wfn 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6532 df-fn 6533 |
| This theorem is referenced by: oarec 8572 swrd00 14660 swrdlend 14669 repswswrd 14800 0rest 17441 grpinvfval 18959 grpinvfvalALT 18960 mulgnn0gsum 19061 psgnfval 19479 odfval 19511 odfvalALT 19512 gsumconst 19913 gsum2dlem2 19950 dprd0 20012 staffval 20799 gsumfsum 21400 pjfval 21664 asclfval 21837 mplcoe1 21993 mplcoe5 21996 coe1fzgsumd 22240 evl1gsumd 22293 mavmul0 22488 submafval 22515 mdetfval 22522 nfimdetndef 22525 mdetfval1 22526 mdet0pr 22528 madufval 22573 madugsum 22579 minmar1fval 22582 cramer0 22626 nmfval 24525 mdegfval 26017 of0r 32602 mptiffisupp 32616 gsumvsca1 33169 gsumvsca2 33170 elrgspnlem4 33186 esumnul 34025 esumrnmpt2 34045 sitg0 34324 mrsubfval 35476 msubfval 35492 elmsubrn 35496 mvhfval 35501 msrfval 35505 matunitlindflem1 37586 matunitlindf 37588 poimirlem28 37618 evl1gprodd 42076 idomnnzgmulnz 42092 deg1gprod 42099 sticksstones11 42115 liminf0 45770 cncfiooicc 45871 itgvol0 45945 stoweidlem9 45986 sge0iunmptlemfi 46390 sge0isum 46404 lincval0 48339 lmdfval 49471 cmdfval 49472 |
| Copyright terms: Public domain | W3C validator |