| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4479 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
| 2 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
| 3 | 2 | fnmpt 6661 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
| 5 | fn0 6652 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∅c0 4299 ↦ cmpt 5191 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: oarec 8529 swrd00 14616 swrdlend 14625 repswswrd 14756 0rest 17399 grpinvfval 18917 grpinvfvalALT 18918 mulgnn0gsum 19019 psgnfval 19437 odfval 19469 odfvalALT 19470 gsumconst 19871 gsum2dlem2 19908 dprd0 19970 staffval 20757 gsumfsum 21358 pjfval 21622 asclfval 21795 mplcoe1 21951 mplcoe5 21954 coe1fzgsumd 22198 evl1gsumd 22251 mavmul0 22446 submafval 22473 mdetfval 22480 nfimdetndef 22483 mdetfval1 22484 mdet0pr 22486 madufval 22531 madugsum 22537 minmar1fval 22540 cramer0 22584 nmfval 24483 mdegfval 25974 of0r 32609 mptiffisupp 32623 gsumvsca1 33186 gsumvsca2 33187 elrgspnlem4 33203 esumnul 34045 esumrnmpt2 34065 sitg0 34344 mrsubfval 35502 msubfval 35518 elmsubrn 35522 mvhfval 35527 msrfval 35531 matunitlindflem1 37617 matunitlindf 37619 poimirlem28 37649 evl1gprodd 42112 idomnnzgmulnz 42128 deg1gprod 42135 sticksstones11 42151 liminf0 45798 cncfiooicc 45899 itgvol0 45973 stoweidlem9 46014 sge0iunmptlemfi 46418 sge0isum 46432 lincval0 48408 lmdfval 49642 cmdfval 49643 |
| Copyright terms: Public domain | W3C validator |