Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4448 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
2 | eqid 2739 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
3 | 2 | fnmpt 6569 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
5 | fn0 6560 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
6 | 4, 5 | mpbi 229 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 ∅c0 4261 ↦ cmpt 5161 Fn wfn 6425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-fun 6432 df-fn 6433 |
This theorem is referenced by: oarec 8369 swrd00 14338 swrdlend 14347 repswswrd 14478 0rest 17121 grpinvfval 18599 grpinvfvalALT 18600 mulgnn0gsum 18691 psgnfval 19089 odfval 19121 odfvalALT 19122 gsumconst 19516 gsum2dlem2 19553 dprd0 19615 staffval 20088 gsumfsum 20646 pjfval 20894 asclfval 21064 mplcoe1 21219 mplcoe5 21222 coe1fzgsumd 21454 evl1gsumd 21504 mavmul0 21682 submafval 21709 mdetfval 21716 nfimdetndef 21719 mdetfval1 21720 mdet0pr 21722 madufval 21767 madugsum 21773 minmar1fval 21776 cramer0 21820 nmfval 23725 mdegfval 25208 gsumvsca1 31458 gsumvsca2 31459 esumnul 31995 esumrnmpt2 32015 sitg0 32292 mrsubfval 33449 msubfval 33465 elmsubrn 33469 mvhfval 33474 msrfval 33478 matunitlindflem1 35752 matunitlindf 35754 poimirlem28 35784 sticksstones11 40092 liminf0 43288 cncfiooicc 43389 itgvol0 43463 stoweidlem9 43504 sge0iunmptlemfi 43905 sge0isum 43919 lincval0 45708 |
Copyright terms: Public domain | W3C validator |