| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4463 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
| 2 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
| 3 | 2 | fnmpt 6621 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
| 5 | fn0 6612 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∅c0 4283 ↦ cmpt 5172 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: oarec 8477 swrd00 14549 swrdlend 14558 repswswrd 14688 0rest 17330 grpinvfval 18888 grpinvfvalALT 18889 mulgnn0gsum 18990 psgnfval 19410 odfval 19442 odfvalALT 19443 gsumconst 19844 gsum2dlem2 19881 dprd0 19943 staffval 20754 gsumfsum 21369 pjfval 21641 asclfval 21814 mplcoe1 21970 mplcoe5 21973 coe1fzgsumd 22217 evl1gsumd 22270 mavmul0 22465 submafval 22492 mdetfval 22499 nfimdetndef 22502 mdetfval1 22503 mdet0pr 22505 madufval 22550 madugsum 22556 minmar1fval 22559 cramer0 22603 nmfval 24501 mdegfval 25992 of0r 32655 mptiffisupp 32669 gsumvsca1 33190 gsumvsca2 33191 elrgspnlem4 33207 esumnul 34056 esumrnmpt2 34076 sitg0 34354 mrsubfval 35540 msubfval 35556 elmsubrn 35560 mvhfval 35565 msrfval 35569 matunitlindflem1 37655 matunitlindf 37657 poimirlem28 37687 evl1gprodd 42149 idomnnzgmulnz 42165 deg1gprod 42172 sticksstones11 42188 liminf0 45830 cncfiooicc 45931 itgvol0 46005 stoweidlem9 46046 sge0iunmptlemfi 46450 sge0isum 46464 lincval0 48446 lmdfval 49680 cmdfval 49681 |
| Copyright terms: Public domain | W3C validator |