![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4536 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
2 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
3 | 2 | fnmpt 6720 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
5 | fn0 6711 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: oarec 8618 swrd00 14692 swrdlend 14701 repswswrd 14832 0rest 17489 grpinvfval 19018 grpinvfvalALT 19019 mulgnn0gsum 19120 psgnfval 19542 odfval 19574 odfvalALT 19575 gsumconst 19976 gsum2dlem2 20013 dprd0 20075 staffval 20864 gsumfsum 21475 pjfval 21749 asclfval 21922 mplcoe1 22078 mplcoe5 22081 coe1fzgsumd 22329 evl1gsumd 22382 mavmul0 22579 submafval 22606 mdetfval 22613 nfimdetndef 22616 mdetfval1 22617 mdet0pr 22619 madufval 22664 madugsum 22670 minmar1fval 22673 cramer0 22717 nmfval 24622 mdegfval 26121 of0r 32696 mptiffisupp 32705 gsumvsca1 33205 gsumvsca2 33206 esumnul 34012 esumrnmpt2 34032 sitg0 34311 mrsubfval 35476 msubfval 35492 elmsubrn 35496 mvhfval 35501 msrfval 35505 matunitlindflem1 37576 matunitlindf 37578 poimirlem28 37608 evl1gprodd 42074 idomnnzgmulnz 42090 deg1gprod 42097 sticksstones11 42113 liminf0 45714 cncfiooicc 45815 itgvol0 45889 stoweidlem9 45930 sge0iunmptlemfi 46334 sge0isum 46348 lincval0 48144 |
Copyright terms: Public domain | W3C validator |