| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4462 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
| 2 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
| 3 | 2 | fnmpt 6626 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
| 5 | fn0 6617 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∅c0 4282 ↦ cmpt 5174 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: oarec 8483 swrd00 14554 swrdlend 14563 repswswrd 14693 0rest 17335 grpinvfval 18893 grpinvfvalALT 18894 mulgnn0gsum 18995 psgnfval 19414 odfval 19446 odfvalALT 19447 gsumconst 19848 gsum2dlem2 19885 dprd0 19947 staffval 20758 gsumfsum 21373 pjfval 21645 asclfval 21818 mplcoe1 21973 mplcoe5 21976 coe1fzgsumd 22220 evl1gsumd 22273 mavmul0 22468 submafval 22495 mdetfval 22502 nfimdetndef 22505 mdetfval1 22506 mdet0pr 22508 madufval 22553 madugsum 22559 minmar1fval 22562 cramer0 22606 nmfval 24504 mdegfval 25995 of0r 32664 mptiffisupp 32678 gsumvsca1 33202 gsumvsca2 33203 elrgspnlem4 33219 esumnul 34082 esumrnmpt2 34102 sitg0 34380 mrsubfval 35573 msubfval 35589 elmsubrn 35593 mvhfval 35598 msrfval 35602 matunitlindflem1 37676 matunitlindf 37678 poimirlem28 37708 evl1gprodd 42230 idomnnzgmulnz 42246 deg1gprod 42253 sticksstones11 42269 liminf0 45915 cncfiooicc 46016 itgvol0 46090 stoweidlem9 46131 sge0iunmptlemfi 46535 sge0isum 46549 lincval0 48540 lmdfval 49774 cmdfval 49775 |
| Copyright terms: Public domain | W3C validator |