![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4513 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
2 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
3 | 2 | fnmpt 6695 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
5 | fn0 6686 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
6 | 4, 5 | mpbi 229 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3058 Vcvv 3471 ∅c0 4323 ↦ cmpt 5231 Fn wfn 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-fun 6550 df-fn 6551 |
This theorem is referenced by: oarec 8582 swrd00 14626 swrdlend 14635 repswswrd 14766 0rest 17410 grpinvfval 18934 grpinvfvalALT 18935 mulgnn0gsum 19034 psgnfval 19454 odfval 19486 odfvalALT 19487 gsumconst 19888 gsum2dlem2 19925 dprd0 19987 staffval 20726 gsumfsum 21366 pjfval 21639 asclfval 21811 mplcoe1 21974 mplcoe5 21977 coe1fzgsumd 22222 evl1gsumd 22275 mavmul0 22453 submafval 22480 mdetfval 22487 nfimdetndef 22490 mdetfval1 22491 mdet0pr 22493 madufval 22538 madugsum 22544 minmar1fval 22547 cramer0 22591 nmfval 24496 mdegfval 25997 mptiffisupp 32473 gsumvsca1 32933 gsumvsca2 32934 esumnul 33667 esumrnmpt2 33687 sitg0 33966 mrsubfval 35118 msubfval 35134 elmsubrn 35138 mvhfval 35143 msrfval 35147 matunitlindflem1 37089 matunitlindf 37091 poimirlem28 37121 evl1gprodd 41588 idomnnzgmulnz 41604 deg1gprod 41612 sticksstones11 41628 liminf0 45181 cncfiooicc 45282 itgvol0 45356 stoweidlem9 45397 sge0iunmptlemfi 45801 sge0isum 45815 lincval0 47483 |
Copyright terms: Public domain | W3C validator |