| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4466 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
| 3 | 2 | fnmpt 6626 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
| 5 | fn0 6617 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∅c0 4286 ↦ cmpt 5176 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: oarec 8487 swrd00 14569 swrdlend 14578 repswswrd 14708 0rest 17351 grpinvfval 18875 grpinvfvalALT 18876 mulgnn0gsum 18977 psgnfval 19397 odfval 19429 odfvalALT 19430 gsumconst 19831 gsum2dlem2 19868 dprd0 19930 staffval 20744 gsumfsum 21359 pjfval 21631 asclfval 21804 mplcoe1 21960 mplcoe5 21963 coe1fzgsumd 22207 evl1gsumd 22260 mavmul0 22455 submafval 22482 mdetfval 22489 nfimdetndef 22492 mdetfval1 22493 mdet0pr 22495 madufval 22540 madugsum 22546 minmar1fval 22549 cramer0 22593 nmfval 24492 mdegfval 25983 of0r 32635 mptiffisupp 32649 gsumvsca1 33178 gsumvsca2 33179 elrgspnlem4 33195 esumnul 34014 esumrnmpt2 34034 sitg0 34313 mrsubfval 35480 msubfval 35496 elmsubrn 35500 mvhfval 35505 msrfval 35509 matunitlindflem1 37595 matunitlindf 37597 poimirlem28 37627 evl1gprodd 42090 idomnnzgmulnz 42106 deg1gprod 42113 sticksstones11 42129 liminf0 45775 cncfiooicc 45876 itgvol0 45950 stoweidlem9 45991 sge0iunmptlemfi 46395 sge0isum 46409 lincval0 48401 lmdfval 49635 cmdfval 49636 |
| Copyright terms: Public domain | W3C validator |