| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4488 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
| 2 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
| 3 | 2 | fnmpt 6678 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
| 5 | fn0 6669 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∅c0 4308 ↦ cmpt 5201 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: oarec 8574 swrd00 14662 swrdlend 14671 repswswrd 14802 0rest 17443 grpinvfval 18961 grpinvfvalALT 18962 mulgnn0gsum 19063 psgnfval 19481 odfval 19513 odfvalALT 19514 gsumconst 19915 gsum2dlem2 19952 dprd0 20014 staffval 20801 gsumfsum 21402 pjfval 21666 asclfval 21839 mplcoe1 21995 mplcoe5 21998 coe1fzgsumd 22242 evl1gsumd 22295 mavmul0 22490 submafval 22517 mdetfval 22524 nfimdetndef 22527 mdetfval1 22528 mdet0pr 22530 madufval 22575 madugsum 22581 minmar1fval 22584 cramer0 22628 nmfval 24527 mdegfval 26019 of0r 32656 mptiffisupp 32670 gsumvsca1 33223 gsumvsca2 33224 elrgspnlem4 33240 esumnul 34079 esumrnmpt2 34099 sitg0 34378 mrsubfval 35530 msubfval 35546 elmsubrn 35550 mvhfval 35555 msrfval 35559 matunitlindflem1 37640 matunitlindf 37642 poimirlem28 37672 evl1gprodd 42130 idomnnzgmulnz 42146 deg1gprod 42153 sticksstones11 42169 liminf0 45822 cncfiooicc 45923 itgvol0 45997 stoweidlem9 46038 sge0iunmptlemfi 46442 sge0isum 46456 lincval0 48391 lmdfval 49523 cmdfval 49524 |
| Copyright terms: Public domain | W3C validator |