![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4518 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
2 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
3 | 2 | fnmpt 6708 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
5 | fn0 6699 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 ∀wral 3058 Vcvv 3477 ∅c0 4338 ↦ cmpt 5230 Fn wfn 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-fun 6564 df-fn 6565 |
This theorem is referenced by: oarec 8598 swrd00 14678 swrdlend 14687 repswswrd 14818 0rest 17475 grpinvfval 19008 grpinvfvalALT 19009 mulgnn0gsum 19110 psgnfval 19532 odfval 19564 odfvalALT 19565 gsumconst 19966 gsum2dlem2 20003 dprd0 20065 staffval 20858 gsumfsum 21469 pjfval 21743 asclfval 21916 mplcoe1 22072 mplcoe5 22075 coe1fzgsumd 22323 evl1gsumd 22376 mavmul0 22573 submafval 22600 mdetfval 22607 nfimdetndef 22610 mdetfval1 22611 mdet0pr 22613 madufval 22658 madugsum 22664 minmar1fval 22667 cramer0 22711 nmfval 24616 mdegfval 26115 of0r 32694 mptiffisupp 32707 gsumvsca1 33214 gsumvsca2 33215 elrgspnlem4 33234 esumnul 34028 esumrnmpt2 34048 sitg0 34327 mrsubfval 35492 msubfval 35508 elmsubrn 35512 mvhfval 35517 msrfval 35521 matunitlindflem1 37602 matunitlindf 37604 poimirlem28 37634 evl1gprodd 42098 idomnnzgmulnz 42114 deg1gprod 42121 sticksstones11 42137 liminf0 45748 cncfiooicc 45849 itgvol0 45923 stoweidlem9 45964 sge0iunmptlemfi 46368 sge0isum 46382 lincval0 48260 |
Copyright terms: Public domain | W3C validator |