Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4449 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
2 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
3 | 2 | fnmpt 6603 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
5 | fn0 6594 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
6 | 4, 5 | mpbi 229 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 ∅c0 4262 ↦ cmpt 5164 Fn wfn 6453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-fun 6460 df-fn 6461 |
This theorem is referenced by: oarec 8424 swrd00 14406 swrdlend 14415 repswswrd 14546 0rest 17189 grpinvfval 18667 grpinvfvalALT 18668 mulgnn0gsum 18759 psgnfval 19157 odfval 19189 odfvalALT 19190 gsumconst 19584 gsum2dlem2 19621 dprd0 19683 staffval 20156 gsumfsum 20714 pjfval 20962 asclfval 21132 mplcoe1 21287 mplcoe5 21290 coe1fzgsumd 21522 evl1gsumd 21572 mavmul0 21750 submafval 21777 mdetfval 21784 nfimdetndef 21787 mdetfval1 21788 mdet0pr 21790 madufval 21835 madugsum 21841 minmar1fval 21844 cramer0 21888 nmfval 23793 mdegfval 25276 gsumvsca1 31528 gsumvsca2 31529 esumnul 32065 esumrnmpt2 32085 sitg0 32362 mrsubfval 33519 msubfval 33535 elmsubrn 33539 mvhfval 33544 msrfval 33548 matunitlindflem1 35821 matunitlindf 35823 poimirlem28 35853 sticksstones11 40312 liminf0 43563 cncfiooicc 43664 itgvol0 43738 stoweidlem9 43779 sge0iunmptlemfi 44181 sge0isum 44195 lincval0 46000 |
Copyright terms: Public domain | W3C validator |