![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4269 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
2 | eqid 2799 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
3 | 2 | fnmpt 6231 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
5 | fn0 6222 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
6 | 4, 5 | mpbi 222 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ∀wral 3089 Vcvv 3385 ∅c0 4115 ↦ cmpt 4922 Fn wfn 6096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-fun 6103 df-fn 6104 |
This theorem is referenced by: oarec 7882 swrd00 13668 swrdlend 13682 repswswrd 13864 0rest 16405 grpinvfval 17776 psgnfval 18233 odfval 18265 gsumconst 18649 gsum2dlem2 18685 dprd0 18746 staffval 19165 asclfval 19657 mplcoe1 19788 mplcoe5 19791 coe1fzgsumd 19994 evl1gsumd 20043 gsumfsum 20135 pjfval 20375 mavmul0 20684 submafval 20711 mdetfval 20718 nfimdetndef 20721 mdetfval1 20722 mdet0pr 20724 madufval 20769 madugsum 20775 minmar1fval 20778 cramer0 20824 nmfval 22721 mdegfval 24163 gsumvsca1 30298 gsumvsca2 30299 esumnul 30626 esumrnmpt2 30646 sitg0 30924 mrsubfval 31922 msubfval 31938 elmsubrn 31942 mvhfval 31947 msrfval 31951 matunitlindflem1 33894 matunitlindf 33896 poimirlem28 33926 liminf0 40769 cncfiooicc 40851 itgvol0 40927 stoweidlem9 40969 sge0iunmptlemfi 41373 sge0isum 41387 lincval0 43003 |
Copyright terms: Public domain | W3C validator |