| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt0 | Structured version Visualization version GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4476 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
| 3 | 2 | fnmpt 6658 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
| 5 | fn0 6649 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
| 6 | 4, 5 | mpbi 230 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∅c0 4296 ↦ cmpt 5188 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: oarec 8526 swrd00 14609 swrdlend 14618 repswswrd 14749 0rest 17392 grpinvfval 18910 grpinvfvalALT 18911 mulgnn0gsum 19012 psgnfval 19430 odfval 19462 odfvalALT 19463 gsumconst 19864 gsum2dlem2 19901 dprd0 19963 staffval 20750 gsumfsum 21351 pjfval 21615 asclfval 21788 mplcoe1 21944 mplcoe5 21947 coe1fzgsumd 22191 evl1gsumd 22244 mavmul0 22439 submafval 22466 mdetfval 22473 nfimdetndef 22476 mdetfval1 22477 mdet0pr 22479 madufval 22524 madugsum 22530 minmar1fval 22533 cramer0 22577 nmfval 24476 mdegfval 25967 of0r 32602 mptiffisupp 32616 gsumvsca1 33179 gsumvsca2 33180 elrgspnlem4 33196 esumnul 34038 esumrnmpt2 34058 sitg0 34337 mrsubfval 35495 msubfval 35511 elmsubrn 35515 mvhfval 35520 msrfval 35524 matunitlindflem1 37610 matunitlindf 37612 poimirlem28 37642 evl1gprodd 42105 idomnnzgmulnz 42121 deg1gprod 42128 sticksstones11 42144 liminf0 45791 cncfiooicc 45892 itgvol0 45966 stoweidlem9 46007 sge0iunmptlemfi 46411 sge0isum 46425 lincval0 48404 lmdfval 49638 cmdfval 49639 |
| Copyright terms: Public domain | W3C validator |